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Abstract

Learning a causal directed acyclic graph from data is a challenging task that
involves solving a combinatorial problem for which the solution is not always iden-
tifiable. A new line of work reformulates this problem as a continuous constrained
optimization one, which is solved via the augmented Lagrangian method. However,
most methods based on this idea do not make use of interventional data, which can
significantly alleviate identifiability issues. This work constitutes a new step in this
direction by proposing a theoretically-grounded method based on neural networks
that can leverage interventional data. We illustrate the flexibility of the continuous-
constrained framework by taking advantage of expressive neural architectures such
as normalizing flows. We show that our approach compares favorably to the state
of the art in a variety of settings, including perfect and imperfect interventions for
which the targeted nodes may even be unknown.

1 Introduction

The inference of causal relationships is a problem of fundamental interest in science. In all fields
of research, experiments are systematically performed with the goal of elucidating the underlying
causal dynamics of systems. This quest for causality is motivated by the desire to take actions that
induce a controlled change in a system. Achieving this requires to answer questions, such as “what
would be the impact on the system if this variable were changed from value x to y?”, which cannot
be answered without causal knowledge [33].

In this work, we address the problem of data-driven causal discovery [16]. Our goal is to design an
algorithm that can automatically discover causal relationships from data. More formally, we aim to
learn a causal graphical model (CGM) [36], which consists of a joint distribution coupled with a
directed acyclic graph (DAG), where edges indicate direct causal relationships. Achieving this based
on observational data alone is challenging since, under the faithfulness assumption, the true DAG is
only identifiable up to a Markov equivalence class [46]. Fortunately, identifiability can be improved
by considering interventional data, i.e., the outcome of some experiments. In this case, the DAG
is identifiable up to an interventional Markov equivalence class, which is a subset of the Markov
equivalence class [48, 15], and, when observing enough interventions [9, 11], the DAG is exactly
identifiable. In practice, it may be possible for domain experts to collect such interventional data,
resulting in clear gains in identifiability. For instance, in genomics, recent advances in gene editing
technologies have given rise to high-throughput methods for interventional gene expression data [6].
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Figure 1: Different intervention types (shown in red). In imperfect interventions, the causal relation-
ships are altered. In perfect interventions, the targeted node is cut out from its parents.

Nevertheless, even with interventional data at hand, finding the right DAG is challenging. The
solution space is immense and grows super-exponentially with the number of variables. Recently,
Zheng et al. [52] proposed to cast this search problem as a constrained continuous-optimization
problem, avoiding the computationally-intensive search typically performed by score-based and
constraint-based methods [36]. The work of Zheng et al. [52] was limited to linear relationships,
but was quickly extended to nonlinear ones via neural networks [27, 49, 53, 32, 21, 54]. Yet, these
approaches do not make use of interventional data and must therefore rely on strong parametric
assumptions (e.g., gaussian additive noise models). Bengio et al. [1] leveraged interventions and
continuous optimization to learn the causal direction in the bivariate setting. The follow-up work
of Ke et al. [23] generalized to the multivariate setting by optimizing an unconstrained objective
with regularization inspired by Zheng et al. [52], but lacked theoretical guarantees. In this work,
we propose a theoretically-grounded differentiable approach to causal discovery that can make
use of interventional data (with potentially unknown targets) and that relies on the constrained-
optimization framework of [52] without making strong assumptions about the functional form of
causal mechanisms, thanks to expressive density estimators.

1.1 Contributions

• We propose Differentiable Causal Discovery with Interventions (DCDI): a general differen-
tiable causal structure learning method that can leverage perfect, imperfect and unknown-
target interventions (Section 3). We propose two instantiations, one of which is a universal
density approximator that relies on normalizing flows (Section 3.4).

• We show that the exact maximization of the proposed score will identify the I-Markov
equivalence class [48] of the ground truth graph (under regularity conditions) for both
the known- and unknown-target settings (Thm. 1 in Section 3.1 & Thm. 2 in Section 3.3,
respectively).

• We provide an extensive comparison of DCDI to state-of-the-art methods in a wide variety
of conditions, including multiple functional forms and types of interventions (Section 4).

2 Background and related work

2.1 Definitions

Causal graphical models. A CGM is defined by a distribution PX over a random vector X =
(X1, · · · , Xd) and a DAG G = (V,E). Each node i ∈ V = {1, · · · d} is associated with a random
variable Xi and each edge (i, j) ∈ E represents a direct causal relation from variable Xi to Xj . The
distribution PX is Markov to the graph G, which means that the joint distribution can be factorized as

p(x1, · · · , xd) =

d∏
j=1

pj(xj |xπGj ) , (1)

where πGj is the set of parents of the node j in the graph G, and xB , for a subset B ⊆ V , denotes the
entries of the vector x with indices in B. In this work, we assume causal sufficiency, i.e., there is no
hidden common cause that is causing more than one variable in X [36].

Interventions. In contrast with standard Bayesian Networks, CGMs support interventions. For-
mally, an intervention on a variable xj corresponds to replacing its conditional pj(xj |xπGj ) by a new
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conditional p̃j(xj |xπGj ) in Equation (1), thus modifying the distribution only locally. Interventions
can be performed on multiple variables simultaneously and we call the interventional target the set
I ⊆ V of such variables. When considering more than one intervention, we denote the interventional
target of the kth intervention by Ik. Throughout this paper, we assume that the observational distribu-
tion (the original distribution without interventions) is observed, and denote it by I1 := ∅. We define
the interventional family by I := (I1, · · · , IK), where K is the number of interventions (including
the observational setting). Finally, the kth interventional joint density is

p(k)(x1, · · · , xd) :=
∏
j /∈Ik

p
(1)
j (xj |xπGj )

∏
j∈Ik

p
(k)
j (xj |xπGj ) , (2)

where the assumption of causal sufficiency is implicit to this definition of interventions.

Type of interventions. The general type of interventions described in (2) are called imperfect (or
soft, parametric) [36, 7, 8]. A specific case that is often considered is (stochastic) perfect interventions
(or hard, structural) [10, 48, 26] where p(k)

j (xj |xπGj ) = p
(k)
j (xj) for all j ∈ Ik, thus removing the

dependencies with their parents (see Figure 1). Real-world examples of these types of interventions
include gene knockout/knockdown in biology. Analogous to a perfect intervention, a gene knockout
completely suppresses the expression of one gene and removes dependencies to regulators of gene
expression. In contrast, a gene knockdown hinders the expression of one gene without removing
dependencies with regulators [55], and is thus an imperfect intervention.

2.2 Causal structure learning

In causal structure learning, the goal is to recover the causal DAG G using samples from PX and,
when available, from interventional distributions. This problem presents two main challenges: 1) the
size of the search space is super-exponential in the number of nodes [5] and 2) the true DAG is not
always identifiable (more severe without interventional data). Methods for this task are often divided
into three groups: constraint-based, score-based, and hybrid methods. We briefly review these below.

Constraint-based methods typically rely on conditional independence testing to identify edges
in G. The PC algorithm [41] is a classical example that works with observational data. It performs
conditional independence tests with a conditioning set that increases at each step of the algorithm
and finds an equivalence class that satisfies all independencies. Methods that support interventional
data include COmbINE [45], HEJ [19], which both rely on Boolean satisfiability solvers to find a
graph that satisfies all constraints; and [24], which proposes an algorithm inspired by FCI [41]. In
contrast with our method, these methods account for latent confounders. The Joint causal inference
framework (JCI) [31] supports latent confounders and can deal with interventions with unknown
targets. This framework can be used with various observational constraint-based algorithms such as
PC or FCI. Another type of constraint-based method exploits the invariance of causal mechanisms
across interventional distributions, e.g., ICP [35, 17]. As will later be presented in Section 3, our loss
function also accounts for such invariances.

Score-based methods formulate the problem of estimating the ground truth DAG G∗ by optimizing
a score function S over the space of DAGs. The estimated DAG Ĝ is given by

Ĝ ∈ arg max
G∈DAG

S(G) . (3)

A typical choice of score in the purely observational setting is the regularized maximum likelihood:

S(G) := max
θ

EX∼PX log fθ(X)− λ|G| , (4)

where fθ is a density function parameterized by θ, |G| is the number of edges in G and λ is a positive
scalar.1 Since the space of DAGs is super-exponential in the number of nodes, these methods often
rely on greedy combinatorial search algorithms. A typical example is GIES [15], an adaptation of
GES [5] to perfect interventions. In contrast with our method, GIES assumes a linear gaussian model
and optimizes the Bayesian information criterion (BIC) over the space of I-Markov equivalence

1This turns into the BIC score when the expectation is estimated with n samples, the model has one parameter
per edge (like in linear models) and λ = logn

2n
[36, Section 7.2.2].
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classes (see Definition 6 in Appendix A.1). CAM [4] is also a score-based method using greedy
search, but it is nonlinear: it assumes an additive noise model where the nonlinear functions are
additive. In the original paper, CAM only addresses the observational case where additive noise
models are identifiable, however code is available to support perfect interventions.

Hybrid methods combine constraint and score-based approaches. Among these, IGSP [47, 48] is
a method that optimizes a score based on conditional independence tests. Contrary to GIES, this
method has been shown to be consistent under the faithfulness assumption. Furthermore, this method
has recently been extended to support interventions with unknown targets (UT-IGSP) [42], which are
also supported by our method.

2.3 Continuous constrained optimization for structure learning

A new line of research initiated by Zheng et al. [52], which serves as the basis for our work,
reformulates the combinatorial problem of finding the optimal DAG as a continuous constrained-
optimization problem, effectively avoiding the combinatorial search. Analogous to standard score-
based approaches, these methods rely on a model fθ parametrized by θ, though θ also encodes the
graph G. Central to this class of methods are both the use a weighted adjacency matrix Aθ ∈ Rd×d≥0

(which depends on the parameters of the model) and the acyclicity constraint introduced by Zheng
et al. [52] in the context of linear models:

Tr eAθ − d = 0 . (5)

The weighted adjacency matrix encodes the DAG estimator Ĝ as (Aθ)ij > 0 ⇐⇒ i → j ∈ Ĝ.
Zheng et al. [52] showed, in the context of linear models, that Ĝ is acyclic if and only if the
constraint Tr eAθ − d = 0 is satisfied. The general optimization problem is then

max
θ

EX∼PX log fθ(X)− λΩ(θ) s.t. Tr eAθ − d = 0 , (6)

where Ω(θ) is a regularizing term penalizing the number of edges in Ĝ. This problem is then
approximately solved using an augmented Lagrangian procedure, as proposed by Zheng et al. [52].
Note that the problem in Equation (6) is very similar to the one resulting from Equations (3) and (4).

Continuous-constrained methods differ in their choice of model, weighted adjacency matrix, and
the specifics of their optimization procedures. For instance, NOTEARS [52] assumes a Gaussian
linear model with equal variances where θ := W ∈ Rd×d is the matrix of regression coefficients,
Ω(θ) := ||W ||1 and Aθ := W �W is the weighted adjacency matrix. Several other methods use
neural networks to model nonlinear relations via fθ and have been shown to be competitive with
classical methods [27, 53]. In some methods, the parameter θ can be partitioned into θ1 and θ2

such that fθ = fθ1 and Aθ = Aθ2 [21, 32, 23] while in others, such a decoupling is not possible,
i.e., the adjacency matrix Aθ is a function of the neural networks parameters [27, 53]. In terms of
scoring, most methods rely on maximum likelihood or variants like implicit maximum likelihood [21]
and evidence lower bound [49]. Zhu and Chen [54] also rely on the acyclicity constraint, but use
reinforcement learning as a search strategy to estimate the DAG. Ke et al. [23] learn a DAG from
interventional data by optimizing an unconstrained objective with a regularization term inspired by
the acyclicity constraint, but that penalizes only cycles of length two. However, their work is limited
to discrete distributions and single-node interventions. To the best of our knowledge, no work has
investigated, in a general manner, the use of continuous-constrained approaches in the context of
interventions as we present in the next section.

3 DCDI: Differentiable causal discovery from interventional data

In this section, we present a score for imperfect interventions, provide a theorem showing its validity,
and show how it can be maximized using the continuous-constrained approach to structure learning.
We also provide a theoretically grounded extension to interventions with unknown targets.

3.1 A score for imperfect interventions

The model we consider uses neural networks to model conditional densities. Moreover, we encode the
DAG G with a binary adjacency matrix MG ∈ {0, 1}d×d which acts as a mask on the neural networks
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inputs. We similarly encode the interventional family I with a binary matrix RI ∈ {0, 1}K×d,
where RIkj = 1 means that Xj is a target in Ik. In line with the definition of interventions in
Equation (2), we model the joint density of the kth intervention by

f (k)(x;MG , RI , φ) :=

d∏
j=1

f̃(xj ; NN(MGj � x;φ
(1)
j ))1−RIkj f̃(xj ; NN(MGj � x;φ

(k)
j ))R

I
kj , (7)

where φ := {φ(1), · · · , φ(K)}, the NN’s are neural networks parameterized by φ(1)
j or φ(k)

j , the
operator � denotes the Hadamard product (element-wise) and MGj denotes the jth column of MG ,
which enables selecting the parents of node j in the graph G. The neural networks output the
parameters of a density function f̃ , which in principle, could be any density. We experiment with
Gaussian distributions and more expressive normalizing flows (see Section 3.4).

We denote G∗ and I∗ := (I∗1 , ..., I
∗
K) to be the ground truth causal DAG and ground truth inter-

ventional family, respectively. In this section, we assume that I∗ is known, but we will relax this
assumption in Section 3.3. We propose maximizing with respect to G the following regularized
maximum log-likelihood score:

SI∗(G) := sup
φ

K∑
k=1

EX∼p(k) log f (k)(X;MG , RI
∗
, φ)− λ|G| , (8)

where p(k) stands for the kth ground truth interventional distribution from which the data is sampled.
A careful inspection of (7) reveals that the conditionals of the model are invariant across interventions
in which they are not targeted. Intuitively, this means that maximizing (8) will favor graphs G in
which a conditional p(xj |xπGj ) is invariant across all interventional distributions in which xj is not a
target, i.e., j 6∈ I∗k . This is a fundamental property of causal graphical models.

We now present our first theoretical result (see Appendix A.2 for the proof). This theorem states that,
under appropriate assumptions, maximizing SI∗(G) yields an estimated DAG Ĝ that is I∗-Markov
equivalent to the true DAG G∗. We use the notion of I∗-Markov equivalence introduced by [48]
and recall its meaning in Definition 6 of Appendix A.1. Briefly, the I∗-Markov equivalence class
of G∗ is a set of DAGs which are indistinguishable from G∗ given the interventional targets in I∗.
This means identifying the I∗-Markov equivalence class of G∗ is the best one can hope for given the
interventions I∗ without making further distributional assumptions.

Theorem 1 (Identification via score maximization) Suppose the interventional family I∗ is such
that I∗1 := ∅. Let G∗ be the ground truth DAG and Ĝ ∈ arg maxG∈DAG SI∗(G). Assume that the
density model has enough capacity to represent the ground truth distributions, that I∗-faithfulness
holds, that the density model is strictly positive and that the ground truth densities p(k) have finite
differential entropy, respectively Assumptions 1, 2, 3 & 4 (see Appendix A.2 for precise statements).
Then for λ > 0 small enough, we have that Ĝ is I∗-Markov equivalent to G∗.

Proof idea. Using the graphical characterization of I-Markov equivalence from Yang et al. [48], we
verify that every graph outside the equivalence class has a lower score than that of the ground truth
graph. We show this by noticing that any such graph will either have more edges than G∗ or limit the
distributions expressible by the model in such a way as to prevent it from properly fitting the ground
truth. Moreover, the coefficient λ must be chosen small enough to avoid too sparse solutions. �

I∗-faithfulness (Assumption 2) enforces two conditions. The first one is the usual faithfulness
condition, i.e., whenever a conditional independence statement holds in the observational distribution,
the corresponding d-separation holds in G∗. The second one requires that the interventions are
non-pathological in the sense that every variable that can be potentially affected by the intervention
are indeed affected. See Appendix A.2 for more details and examples of I∗-faithfulness violations.

To interpret this result, note that the I∗-Markov equivalence class of G∗ tends to get smaller as we add
interventional targets to the interventional family I∗. As an example, when I∗ = (∅, {1}, · · · , {d}),
i.e., when each node is individually targeted by an intervention, G∗ is alone in its equivalence class
and, if assumptions of Theorem 1 hold, Ĝ = G∗. See Corollary 11 in Appendix A.1 for details.

Perfect interventions. The score SI∗(G) can be specialized for perfect interventions, i.e., where the
targeted nodes are completely disconnected from their parents. The idea is to leverage the fact that the
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conditionals targeted by the intervention in Equation (7) should not depend on the graph G anymore.
This means that these terms can be removed without affecting the maximization w.r.t. G. We use this
version of the score when experimenting with perfect interventions and present it in Appendix A.4.

3.2 A continuous-constrained formulation

To allow for gradient-based stochastic optimization, we follow [21, 32] and treat the adjacency
matrix MG as random, where the entries MGij are independent Bernoulli variables with success
probability σ(αij) (σ is the sigmoid function) and αij is a scalar parameter. We group these αij’s
into a matrix Λ ∈ Rd×d. We then replace the score SI∗(G) (8) with the following relaxation:

ŜI∗(Λ) := sup
φ

E
M∼σ(Λ)

[
K∑
k=1

E
X∼p(k)

log f (k)(X;M,RI
∗
, φ)− λ||M ||0

]
, (9)

where we dropped the G superscript in M to lighten notation. This score tends asymptotically
to SI∗(G) as σ(Λ) progressively concentrates its mass on G.2 While the expectation of the log-
likelihood term is intractable, the expectation of the regularizing term simply evaluates to λ||σ(Λ)||1.
This score can then be maximized under the acyclicity constraint presented in Section 2.3:

sup
Λ
ŜI∗(Λ) s.t. Tr eσ(Λ) − d = 0 . (10)

This problem presents two main challenges: it is a constrained problem and it contains intractable ex-
pectations. As proposed by [52], we rely on the augmented Lagrangian procedure to optimize φ and Λ
jointly under the acyclicity constraint. This procedure transforms the constrained problem into a
sequence of unconstrained subproblems which can themselves be optimized via a standard stochastic
gradient descent algorithm for neural networks such as RMSprop. The procedure should converge to a
stationary point of the original constrained problem (which is not necessarily the global optimum due
to the non-convexity of the problem). In Appendix B.3, we give details on the augmented Lagrangian
procedure and show the learning process in details with a concrete example.

The gradient of the likelihood part of ŜI∗(Λ) w.r.t. Λ is estimated using the Straight-Through Gumbel
estimator. This amounts to using Bernoulli samples in the forward pass and Gumbel-Softmax samples
in the backward pass which can be differentiated w.r.t. Λ via the reparametrization trick [20, 29]. This
approach was already shown to give good results in the context of continuous optimization for causal
discovery in the purely observational case [32, 21]. We emphasize that our approach belongs to the
general framework presented in Section 2.3 where the global parameter θ is {φ,Λ}, the weighted
adjacency matrix Aθ is σ(Λ) and the regularizing term Ω(θ) is ||σ(Λ)||1.

3.3 Interventions with unknown targets

Until now, we have assumed that the ground truth interventional family I∗ is known. We now consider
the case were it is unknown and, thus, needs to be learned. To do so, we propose a simple modification
of score (8) which consists in adding regularization to favor sparse interventional families.

S(G, I) := sup
φ

K∑
k=1

EX∼p(k) log f (k)(X;MG , RI , φ)− λ|G| − λR|I| , (11)

where |I| =
∑K
k=1 |Ik|. The following theorem, proved in Appendix A.3, extends Theorem 1 by

showing that, under the same assumptions, maximizing S(G, I) with respect to both G and I recovers
both the I∗-Markov equivalence class of G∗ and the ground truth interventional family I∗.

Theorem 2 (Unknown targets identification) Suppose I∗ is such that I∗1 := ∅. Let G∗ be the
ground truth DAG and (Ĝ, Î) ∈ arg maxG∈DAG,I S(G, I). Under the same assumptions as Theorem 1
and for λ, λR > 0 small enough, Ĝ is I∗-Markov equivalent to G∗ and Î = I∗.

Proof idea. We simply append a few steps at the beginning of the proof of Theorem 1 which show
that whenever I 6= I∗, the resulting score is worse than S(G∗, I∗), and hence is not optimal. This is
done using arguments very similar to Theorem 1 and choosing λ and λR small enough. �

2In practice, we observe that σ(Λ) tends to become deterministic as we optimize.
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Theorem 2 informs us that ignoring which nodes are targeted during interventions does not affect
identifiability. However, this result assumes implicitly that the learner knows which data set is the
observational one.

Similarly to the development of Section 3.2, the score S(G, I) can be relaxed by treating entries
of MG and RI as independent Bernoulli random variables parameterized by σ(αij) and σ(βkj),
respectively. We thus introduced a new learnable parameter β. The resulting relaxed score is
similar to (9), but the expectation is taken w.r.t. to M and R. Similarly to Λ, the Straight-Through
Gumbel estimator is used to estimate the gradient of the score w.r.t. the parameters βkj . For perfect
interventions, we adapt this score by masking all inputs of the neural networks under interventions.

The related work of Ke et al. [23], which also support unknown targets, bears similarity to DCDI but
addresses a different setting in which interventions are obtained sequentially in an online fashion. One
important difference is that their method attempts to identify the single node that has been intervened
upon (as a hard prediction), whereas DCDI learns a distribution over all potential interventional
families via the continuous parameters σ(βkj), which typically becomes deterministic at convergence.
Ke et al. [23] also use random masks to encode the graph structure but estimates the gradient w.r.t.
their distribution parameters using the log-trick which is known to have high variance [39] compared
to reparameterized gradient [29].

3.4 DCDI with normalizing flows

In this section, we describe how the scores presented in Sections 3.2 & 3.3 can accommodate powerful
density approximators. In the purely observational setting, very expressive models usually hinder
identifiability, but this problem vanishes when enough interventions are available. There are many
possibilities when it comes to the choice of the density function f̃ . In this paper, we experimented
with simple Gaussian distributions as well as normalizing flows [38] which can represent complex
causal relationships, e.g., multi-modal distributions that can occur in the presence of latent variables
that are parent of only one variable.

A normalizing flow τ(·;ω) is an invertible function (e.g., a neural network) parameterized by ω with
a tractable Jacobian, which can be used to model complex densities by transforming a simple random
variable via the change of variable formula:

f̃(z;ω) :=

∣∣∣∣det

(
∂τ(z;ω)

∂z

)∣∣∣∣ p(τ(z;ω)) , (12)

where ∂τ(z;ω)
∂z is the Jacobian matrix of τ(·;ω) and p(·) is a simple density function, e.g., a Gaussian.

The function f̃(·;ω) can be plugged directly into the scores presented earlier by letting the neural
networks NN(·;φ(k)

j ) output the parameter ωj of the normalizing flow τj for each variable xj . In our
implementation, we use deep sigmoidal flows (DSF), a specific instantiation of normalizing flows
which is a universal density approximator [18]. Details about DSF are relayed to Appendix B.2.

4 Experiments

We tested DCDI with Gaussian densities (DCDI-G) and with normalizing flows (DCDI-DSF) on
a real-world data set and several synthetic data sets. The real-world task is a flow cytometry data
set from Sachs et al. [40]. Our results, reported in Appendix C.1, show that our approach performs
comparably to state-of-the-art methods. In this section, we focus on synthetic data sets, since these
allow for a more systematic comparison of methods against various factors of variation (type of
interventions, graph size, density, type of mechanisms).

We consider synthetic data sets with three interventional settings: perfect/known, imperfect/known,
and perfect/unknown. Each data set has one of the three different types of causal mechanisms: i)
linear [42], ii) nonlinear additive noise model (ANM) [4], and iii) nonlinear with non-additive noise
using neural networks (NN) [21]. For each data set type, graphs vary in size (d = 10 or 20) and
density (e = 1 or 4 where e ·d is the average number of edges). For conciseness, we present results for
20-node graphs in the main text and report results on 10-node graphs in Appendix C.7; conclusions
are similar for all sizes. For each condition, ten graphs are sampled with their causal mechanisms and
then observational and interventional data are generated. Each data set has 10 000 samples uniformly
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Figure 2: Perfect interventions. SHD and SID (lower is better) for 20-node graphs

distributed in the different interventional settings. A total of d interventions were performed, each by
sampling up to 0.1d target nodes. For more details on the generation process, see Appendix B.1.

Most methods have an hyperparameter controlling DAG sparsity. Although performance is sensitive to
this hyperparameter, many papers do not specify how it was selected. For score-based methods (GIES,
CAM and DCDI), we select it by maximizing the held-out likelihood as explained in Appendix B.5
(without using the ground truth DAG). In contrast, since constraint-based methods (IGSP, UT-
IGSP, JCI-PC) do not yield a likelihood model to evaluate on held-out data, we use a fixed cutoff
parameter (α = 1e−3) that leads to good results. We report additional results with different cutoff
values in Appendix C.7. For IGSP and UT-IGSP, we always use the independence test well tailored to
the data set type: partial correlation test for Gaussian linear data and KCI-test [50] for nonlinear data.

The performance of each method is assessed by two metrics comparing the estimated graph to
the ground truth graph: i) the structural Hamming distance (SHD) which is simply the number of
edges that differ between two DAGs (either reversed, missing or superfluous) and ii) the structural
interventional distance (SID) which assesses how two DAGs differ with respect to their causal
inference statements [34]. In Appendix C.6, we also report how well the graph can be used to
predict the effect of unseen interventions [13]. Our implementation is available here and additional
information about the baseline methods is provided in Appendix B.4.

4.1 Results for different intervention types

Perfect interventions. We compare our methods to GIES [15], a modified version of CAM [4]
that support interventions and IGSP [47]. The conditionals of targeted nodes were replaced by the
marginal N (2, 1) similarly to [15, 42]. Boxplots for SHD and SID over 10 graphs are shown in
Figure 2. For all conditions, DCDI-G and DCDI-DSF shows competitive results in term of SHD and
SID. For graphs with a higher number of average edges, DCDI-G and DCDI-DSF outperform all
methods. GIES often shows the best performance for the linear data set, which is not surprising given
that it makes the right assumptions, i.e., linear functions with Gaussian noise.

Imperfect interventions. Our conclusions are similar to the perfect intervention setting. As shown in
Figure 3, DCDI-G and DCDI-DSF show competitive results and outperform other methods for graphs
with a higher connectivity. The nature of the imperfect interventions are explained in Appendix B.1.

Perfect unknown interventions. We compare to UT-IGSP [42], an extension of IGSP that deal with
unknown interventions. The data used are the same as in the perfect intervention setting, but the
intervention targets are hidden. Results are shown in Figure 4. Except for linear data sets with sparse
graphs, DCDI-G and DCDI-DSF show an overall better performance than UT-IGSP.

Summary. For all intervention settings, DCDI has overall the best performance. In Appendix C.5,
we show similar results for different types of perfect/imperfect interventions. While the advantage
of DCDI-DSF over DCDI-G is marginal, it might be explained by the fact that the densities can be
sufficiently well modeled by DCDI-G. In Appendix C.2, we show cases where DCDI-G fails to detect
the right causal direction due to its lack of capacity, whereas DCDI-DSF systematically succeeds.
In Appendix C.4, we present an ablation study confirming the advantage of neural networks against
linear models and the ability of our score to leverage interventional data.
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Figure 4: Unknown interventions. SHD and SID for 20-node graphs

4.2 Scalability experiments

So far the experiments focused on moderate size data sets, both in terms of number of variables (10
or 20) and number of examples (≈ 104). In Appendix C.3, we compare the running times of DCDI
to those of other methods on graphs of up to 100 nodes and on data sets of up to 1 million examples.

The augmented Lagrangian procedure on which DCDI relies requires the computation of the matrix
exponential at each gradient step, which costs O(d3). We found this does not prevent DCDI from
being applied to 100 nodes graphs. Several constraint-based methods use kernel-based conditional
independence tests [50, 12], which scale poorly with the number of examples. For example, KCI-test
scales in O(n3) [43] and HSIC in O(n2) [51]. On the other hand, DCDI is not greatly affected by
the sample size since it relies on stochastic gradient descent which is known to scale well with the
data set size [3]. Our comparison shows that, among all considered methods, DCDI is the only one
supporting nonlinear relationships that can scale to as much as one million examples. We believe that
this can open the way to new applications of causal discovery where data is abundant.

5 Conclusion

We proposed a general continuous-constrained method for causal discovery which can leverage
various types of interventional data as well as expressive neural architectures, such as normalizing
flows. This approach is rooted in a sound theoretical framework and is competitive with other state-
of-the-art algorithms on real and simulated data sets, both in terms of graph recovery and scalability.
This work opens interesting opportunities for future research. One direction is to extend DCDI to
time-series data, where non-stationarities can be modeled as unknown interventions [37]. Another
exciting direction is to learn representations of variables across multiple systems that could serve as
prior knowledge for causal discovery in low data settings.
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Broader impact

Causal structure learning algorithms are general tools that address two high-level tasks: understanding
and acting. That is, they can help a user understand a complex system and, once such an understanding
is achieved, they can help in recommending actions. We envision positive impacts of our work in
fields such as scientific investigation (e.g., interpreting and anticipating the outcome of experiments),
policy making for decision-makers (e.g., identifying actions that could stimulate economic growth),
and improving policies in autonomous agents (e.g., learning causal relationships in the world via
interaction). As a concrete example, consider the case of gene knockouts/knockdowns experiments
in the field of genomics, which aim to understand how specific genes and diseases interact [55].
Learning causal models using interventions performed in this setting could help gain precious insight
into gene pathways, which may catalyze the development of better pharmaceutic targets and broaden
our understanding of complex diseases such as cancer. Of course, applications are likely to extend
beyond these examples which seem natural from our current position.

Like any methodological contribution, our work is not immune to undesirable applications that could
have negative impacts. For instance, it would be possible, yet unethical for a policy-maker to use our
algorithm to understand how specific human-rights violations can reduce crime and recommend their
enforcement. The burden of using our work within ethical and benevolent boundaries would rely on
the user. Furthermore, even when used in a positive application, our method could have unintended
consequences if used without understanding its assumptions.

In order to use our method correctly, it is crucial to understand the assumptions that it makes about
the data. When such assumptions are not met, the results may still be valid, but should be used as a
support to decision rather than be considered as the absolute truth. These assumptions are:

• Causal sufficiency: there are no hidden confounding variables

• The samples for a given interventional distribution are independent and identically distributed

• The causal relationships form an acyclic graph (no feedback loops)

• Our theoretical results are valid in the infinite-data regime

We encourage users to be mindful of this and to carefully analyze their results before making decisions
that could have a significant downstream impact.
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A Theory

A.1 Theoretical Foundations for Causal Discovery with Imperfect Interventions

Before showing results about our regularized maximum likelihood score from Section 3.1, we start
by briefly presenting useful definitions and results from Yang et al. [48]. We refer the reader to
the original paper for a more comprehensive introduction to these notions, examples, and proofs.
Throughout the appendix, we assume that the reader is comfortable with the concept of d-separation
and immorality in directed graphs. These notions are presented in any standard book on probabilistic
graphical models, e.g. Koller and Friedman [25]. Recall that I := (I∗1 , ..., IK) and that we always
assume I1 := ∅. Following the approach of Yang et al. [48] and to simplify the presentation, we
consider only densities which are strictly positive everywhere throught this appendix. We also note
that while we present proofs for the cases where the distributions have densities with respect to the
Lebesgue measure, all our results also hold for discrete distributions by simply replacing the Lebesgue
measure with the counting measure in the integrals. We use the notation i→ j ∈ G to indicate that
the edge (i, j) is in the edge set of G. Given disjoint A,B,C ⊂ V , when C d-separates A from B in
graph G, we write A ⊥⊥G B | C and when random variables XA and XB are independent given XC

in distribution f , we write XA ⊥⊥f XB | XC .

Definition 3 For a DAG G, letM(G) be the set of strictly positive densities f : Rd → R such that

f(x1, · · · , xd) =
∏
j

fj(xj | xπGj ) , (13)
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where
∫
R fj(xj | xπGj )dm(xj) = 1 for all xπGj ∈ R|π

G
j | and all j ∈ [d], where m is the Lebesgue

measure on R.

Next proposition is adapted from Lauritzen [28, Theorem 3.27]. It relates the factorization of (13) to
d-separation statements.

Proposition 4 For a DAG G and a strictly positive density f ,3 we have f ∈M(G) if and only if for
any disjoint sets A,B,C ⊂ V we have

A ⊥⊥G B | C =⇒ XA ⊥⊥f XB | XC .

Definition 5 For a DAG G and an interventional family I, let

MI(G) := {(f (k))k∈[K] | ∀k ∈ [K], f (k) ∈M(G) and ∀j 6∈ Ik, f (k)
j (xj | xπGj ) = f

(1)
j (xj | xπGj )} .

Definition 5 defines a setMI(G) which contains all the sets of distributions (f (k))k∈[K] which are
coherent with the definition of interventions provided at Equation (2).4 Note that the assumption of
causal sufficiency is implicit to this definition of interventions. Analogously to the observational case,
two different DAGs G1 and G2 can induce the same interventional distributions.

Definition 6 (I-Markov Equivalence Class) Two DAGs G1 and G2 are I-Markov equivalent iff
MI(G1) =MI(G2). We denote by I-MEC(G1) the set of all DAGs which are I-Markov equivalent
to G1, this is the I-Markov equivalence class of G1.

We now define an augmented graph containing exactly one node for each intervention k.

Definition 7 Given a DAG G and an interventional family I, the associated I-DAG, denoted by GI ,
is the graph G augmented with nodes ζk and edges ζk → i for all k ∈ [K] \ {1} and all i ∈ Ik.

In the observational case, we say that a distribution f has the Markov property w.r.t. a graph G if
whenever some d-separation holds in the graph, the corresponding conditional independence holds in
f . We now define the I-Markov property, which generalizes this idea to interventions. This property
is important since it holds in causal graphical models, as Proposition 9 states.

Definition 8 (I-Markov property) Let I be interventional family such that I1 := ∅ and (f (k))k∈[K]

be a family of strictly positive densities over X . We say that (f (k))k∈[K] satisfies the I-Markov
property w.r.t. the I-DAG GI iff

1. For any disjoint A,B,C ⊂ V , A ⊥⊥G B|C implies XA ⊥⊥f(k) XB |XC for all k ∈ [K].

2. For any disjoint A,C ⊂ V and k ∈ [K] \ {1},
A ⊥⊥GI ζk | C ∪ ζ−k implies f (k) (XA|XC) = f (1) (XA|XC), where ζ−k := ζ[K]\{1,k}.

The next proposition relates the definition of interventions with the I-Markov property that we just
defined.

Proposition 9 (Yang et al. [48]) Suppose the interventional family I is such that I1 := ∅. Then
(f (k))k∈[K] ∈MI(G) iff (f (k))k∈[K] is I-Markov to GI .

The next theorem gives a graphical characterization of I-Markov equivalence classes, which will be
crucial in the proof of Theorem 1.

Theorem 10 (Yang et al. [48]) Suppose the interventional family I is such that I1 := ∅. Two
DAGs G1 and G2 are I-Markov equivalent iff their I-DAGs GI1 and GI2 share the same skeleton and
immoralities.

See Figure 5 for a simple illustration of this concept. We now present a very simple corollary which
gives a situation where the I-Markov equivalence class contains a unique graph.

3Note that Proposition 4 holds even for distributions with densities which are not strictly positive.
4Yang et al. [48] definesMI(G) slightly differently, but show their definition to be equivalent to the one

used here. See Lemma A.1 in Yang et al. [48]
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Figure 5: Different I-DAGs with a single intervention. The first graph is alone in its I-Markov
equivalence class since reversing the 1 → 2 edge would break the immorality 1 → 2 ← ζ. The
second graph is also alone in its equivalence class since reversing 1 → 2 would create a new
immorality ζ → 1← 2. The third DAG is not alone in its equivalence class since reversing 1→ 2
would preserve the skeleton without adding or removing an immorality. It should become apparent
that adding more interventions will likely reduce the size of the I-Markov equivalence class by
introducing more immoralities.

Corollary 11 Let G be a DAG and let I = (∅, {1}, · · · , {d}). Then G is alone in its I-Markov
equivalence class.

Proof. By Theorem 10, all I-Markov equivalent graphs will share its skeleton with G, so we consider
only graphs obtained by reversing edges in G.

Consider any edge i→ j in G. We note that i→ j ← ζj+1 forms an immorality in the I-DAG GI .
Reversing i → j would break this immorality which would imply that the resulting DAG is not
I-Markov equivalent to G, by Theorem 10. Hence, G is alone in its equivalence class.�

A.2 Proof of Theorem 1

We are now ready to present the main result of this section. We recall the score function introduced
in Section 3.1:

SI∗(G) := sup
φ

K∑
k=1

EX∼p(k) log f (k)(X;MG , RI
∗
, φ)− λ|G| , (14)

where

f (k)(x;MG , RI , φ) :=

d∏
j=1

f̃(xj ; NN(MGj � x;φ
(1)
j ))1−RIkj f̃(xj ; NN(MGj � x;φ

(k)
j ))R

I
kj . (15)

Recall that (p(k))k∈[K] are the ground truth interventional distributions with ground truth graph G∗

and ground truth interventional family I∗. We will sometimes use the notation f (k)
GIφ(x) to refer to

f (k)(x;MG , RI , φ). We define FI(G) to be the set of all (f (k))k∈[K] which are expressible by the
model specified in Equation (15). More precisely,

FI(G) := {(f (k))k∈[K] | ∃ φ s.t. ∀ k ∈ [K] f (k) = f
(k)
GIφ} . (16)

Theorem 1 relies on four assumptions. The first one requires that the model is expressive enough to
represent the ground truth distributions exactly.

Assumption 1 (Sufficient capacity) The ground truth interventional distributions P (k) all have a
density p(k) w.r.t. the Lebesgue measure on Rn such that (p(k))k∈[K] ∈ FI∗(G∗), i.e. the model
specified in Equation (15) is expressive enough to represent the ground truth distributions.

The second assumption is a generalization of faithfulness to interventions.

Assumption 2 (I∗-Faithfulness)

1. For any disjoint A,B,C ⊂ V ,

A 6⊥⊥ G∗B|C implies XA 6⊥⊥ p(1)XB |XC .
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2. For any disjoint A,C ⊂ V and k ∈ [K],

A 6⊥⊥ G∗I∗ ζk | C ∪ ζ−k implies p(k) (XA|XC) 6= p(1) (XA|XC) .

The first condition of Assumption 2 is exactly the standard faithfulness assumption for the ground
truth observational distribution. The second condition is simply the converse of the second condition
in the I-Markov property (Definition 8) and can be understood as avoiding pathological interventions
to make sure that every variables that can be potentially affected by the intervention are indeed
affected. The simplest case is when Ik := {j}, A := {j} and C := πG

∗

j . In this case the condition
requires that the intervention actually change something. Another simple case is when C := ∅. In
this case, the condition requires that all descendants are affected, in the sense that their marginals
change.

As we just saw, a trivial violation of I∗-faithfulness would be when the intervention is not changing
anything, not even the targeted conditional. We now present a non-trivial violation of I∗-faithfulness.

Example 12 (I∗-Faithfulness violation) Suppose G∗ is X1 → X2 where both variables are binary.
Assume p(1)(X1 = 1) = 1

2 , p(1)(X2 = 1 | X1 = 0) = 1
4 and p(1)(X2 = 1 | X1 = 1) = 3

4 . From
this, we can compute p(1)(X2 = 1) = 1

2 . Consider the intervention targeting only X2 which changes
its conditional to p(2)(X2 = 1 | X1 = 0) = 3

4 and p(2)(X2 = 1 | X1 = 1) = 1
4 . So the interven-

tional family is I∗ = (∅, {2}). A simple computation shows the new marginal on X2 has not changed,
i.e. p(2)(X2) = p(1)(X2). This is a violation of I∗-faithfulness since clearly X2 is not d-separated
from the interventional node ζ2 in G∗I∗ .

The third assumption is a technicality to simplify the presentation of the proofs and to follow the
presentation of Yang et al. [48]: we require the density model to be strictly positive.

Assumption 3 (Strict positivity) For all k ∈ [K], the model density f (k)(x;MG , RI , φ) is strictly
positive for all φ, DAG G and interventional family I.

Note that Assumption 3 is satisfied for example when for all θ in the image of NN, the density f̃(·; θ)
is strictly positive. This happens when using a Gaussian density with variance strictly positive or a
deep sigmoidal flow.

From Equation (16) and Assumption 3, it should be clear that FI(G) ⊂ MI(G) (recall MI(G)
contains only strictly positive densities). Thus, from Proposition 9 we see that the I-Markov property
holds for all (f (k))k∈[K] ∈ FI(G). This fact will be useful in the proof of Theorem 1.

The fourth assumption is purely technical. It requires the differential entropy of the densities p(k) to
be finite, which, as we will see in Lemma 13, ensures that the score of the ground truth graph SI∗(G∗)
is finite. This will be important to ensure that the score of any other graphs can be compared to it. In
particular, this is avoiding the hypothetical situation where SI∗(G∗) and SI∗(G) are both equal to
infinity, which means they cannot be easily compared without defining a specific limiting process.

Assumption 4 (Finite differential entropies) For all k ∈ [K],

|Ep(k) log p(k)(X)| <∞ .

Lemma 13 (Finite scores) Under Assumptions 1 & 4, |SI∗(G∗)| <∞.

Proof. Consider the Kullback-Leibler divergence between p(k) and f (k)
G∗I∗φ for an arbitrary φ.

0 ≤ DKL(p(k)||f (k)
G∗I∗φ) = Ep(k) log p(k)(X)− Ep(k) log f

(k)
G∗I∗φ(X) , (17)

where we applied the linearity of the expectation (which holds because |Ep(k) log p(k)(X)| < ∞).
We thus have that

Ep(k) log f
(k)
G∗I∗φ(X) ≤ Ep(k) log p(k)(X) <∞ . (18)

Thus, supφ Ep(k) log f
(k)
G∗I∗φ(X) <∞, which implies SI∗(G∗) <∞.
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By the assumption of sufficient capacity, there exists some φ∗ such that f (k)
G∗φ∗ = p(k) for all k, hence

supφ
∑K
k=1 Ep(k) log f

(k)
G∗I∗φ(X) ≥

∑K
k=1 Ep(k) log f

(k)
G∗φ∗(X) =

∑K
k=1 Ep(k) log p(k)(X) > −∞.

This implies that SI∗(G∗) > −∞. �

The next lemma shows that the difference SI∗(G∗)−SI∗(G) can be rewritten as a minimization of a
sum of KL divergences plus the difference in regularizing terms.

Lemma 14 (Rewriting of score differences) Under Assumption 1 & 4, we have

SI∗(G∗)− SI∗(G) = inf
φ

∑
k∈[K]

DKL(p(k)||f (k)
GI∗φ) + λ(|G| − |G∗|) . (19)

Proof. By Lemma 13, we have that |SI∗(G∗)| <∞, which ensures the difference SI∗(G∗)−SI∗(G)
is well defined.

SI∗(G∗)− SI∗(G) (20)

= SI∗(G∗)−
∑
k∈[K]

Ep(k) log p(k)(X)− SI∗(G) +
∑
k∈[K]

Ep(k) log p(k)(X) (21)

= sup
φ

∑
k∈[K]

Ep(k) log f
(k)
G∗I∗φ(X)−

∑
k∈[K]

Ep(k) log p(k)(X)

− sup
φ

∑
k∈[K]

Ep(k) log f
(k)
GI∗φ(X) +

∑
k∈[K]

Ep(k) log p(k)(X)

+ λ(|G| − |G∗|) (22)

= inf
φ
−
∑
k∈[K]

Ep(k) log f
(k)
GI∗φ(X) +

∑
k∈[K]

Ep(k) log p(k)(X)

− inf
φ
−
∑
k∈[K]

Ep(k) log f
(k)
G∗I∗φ(X)−

∑
k∈[K]

Ep(k) log p(k)(X)

+ λ(|G| − |G∗|) (23)

= inf
φ

∑
k∈[K]

DKL(p(k)||f (k)
GI∗φ)− inf

φ

∑
k∈[K]

DKL(p(k)||f (k)
G∗I∗φ)

+ λ(|G| − |G∗|) (24)

The first equality holds since by Assumption 4 the differential entropy of p(k) is finite for all k.
In (24), we use the linearity of the expectation, which holds because the entropy term is finite. By
Assumption 1, (p(k))k∈[K] ∈ FI∗(G∗) which implies that infφ

∑
k∈[K]DKL(p(k)||f (k)

G∗I∗φ) = 0.�

We will now prove three technical lemmas (Lemma 15, 16 & 18). Their proof can be safely skipped
during a first reading.

Lemma 15 is adapted from Koller and Friedman [25, Theorem 8.7] to handle cases where infinite
differential entropies might arise.

Lemma 15 Let G be a DAG. If p 6∈ M(G) and p(x) > 0 for all x ∈ Rd, then

inf
f∈M(G)

DKL(p||f) > 0 .

Proof. We consider a new density function defined as

f̂(x) :=

d∏
j=1

p(xj | xπGj ) , (25)

where

p(xj |xπGj ) :=
p(xj , xπGj

)

p(xπGj
)

, (26)

18



i.e. it is the conditional density. This should not be conflated with p(xj |xπG∗j ). It should be clear

from (25) and the fact that p is strictly positive that f̂ ∈ M(G) hence p 6= f̂ . We will show that
f̂ ∈ arg minf∈M(G)DKL(p||f).

Pick an arbitrary f ∈ M(G). We first show that Ep log f̂(X)
f(X) can be written as a sum of KL

divergences.

Ep log
f̂(X)

f(X)
= Ep

d∑
j=1

log
p(Xj |XπGj

)

f(Xj |XπGj
)

(27)

=

d∑
j=1

Ep log
p(Xj |XπGj

)

f(Xj |XπGj
)

(28)

In Equation (28), we apply the linearity of the Lebesgue integral, which holds as long as we are not
summing infinities of opposite signs (in which case the sum is undefined).5 We now show that it is
not the case since each term is an expectation of a KL divergence, which is in [0,+∞]:

Ep log
p(Xj |XπGj

)

f(Xj |XπGj
)

=

∫
p(xπGj

)

∫
p(xj | xπGj ) log

p(xj |xπGj )

f(xj |xπGj )
dxjdxπGj

(29)

=

∫
p(xπGj

)DKL(p(·j | xπGj )||f(·j | xπGj ))) . (30)

This implies that Ep log f̂(X)
f(X) ∈ [0,+∞]. We can now show that f̂ ∈ arg minf∈M(G)DKL(p||f):

DKL(p||f) = Ep log
p(X)

f̂(X)

f̂(X)

f(X)
(31)

= Ep log
p(X)

f̂(X)
+ Ep log

f̂(X)

f(X)
(32)

= DKL(p||f̂) + Ep log
f̂(X)

f(X)
(33)

≥ DKL(p||f̂) > 0 . (34)

Equation (32) holds as long as we do not have∞−∞. It is not the case here since (i) the first term
is a KL divergence, so it is in [0,+∞], and (ii) the second term was already shown to be in [0,+∞].
The very last inequality holds because p 6= f̂ .

We conclude by noting that inff∈M(G)DKL(p||f) = DKL(p||f̂) > 0. �

The following lemma will make use of the following definition:

Z(j, A) := {(f (1), f (2)) | f (1)(xj | xA) = f (2)(xj | xA) and f (1), f (2) > 0} . (35)

Lemma 16 Let j ∈ V and A ⊂ V \ {j}. If (p(1), p(2)) 6∈ Z(j, A) and both p(1) and p(2) are strictly
positive, then

inf
(f(1),f(2))∈Z(j,A)

DKL(p(1)||f (1)) +DKL(p(2)||f (2)) > 0 .

5The linearity of the Lebesgue integral is typically stated for Lebesgue integrable functions f and g, i.e.∫
|f |,

∫
|g| <∞. See for example Billingsley [2, Theorem 16.1]. However, it can be extended to cases where f

and g are not integrable, as long as
∫
f and

∫
g are well-defined and are not infinities of opposite sign (which

would yield the undefined expression∞−∞). The proof is a simple adaptation of Theorem 16.1 which makes
use of Theorem 15.1 in Billingsley [2].
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Proof. The proof is very similar in spirit to the proof of Lemma 15.

We define new density functions:

pmid(x) :=
p(1)(x) + p(2)(x)

2
(36)

f̂ (k)(x) := p(k)(xA)pmid(xj | xA)p(k)(xV \A\j | xA∪j) ∀k ∈ {1, 2} . (37)

We note that pmid, f̂ (1) and f̂ (2) are strictly positive since p(1) and p(2) are strictly positive. By
construction, we have f̂ (1)(xj |xA) = f̂ (2)(xj |xA), and thus (f̂ (1), f̂ (2)) ∈ Z(i, A). This means that
f̂ (1) 6= p(1) or f̂ (2) 6= p(2).

Pick an arbitrary (f (1), f (2)) ∈ Z(j, A). We start by showing that the integral∫
p(1)(x) log f̂(1)(x)

f(1)(x)
+ p(2)(x) log f̂(2)(x)

f(2)(x)
dx is in [0,+∞].∫

p(1)(x) log
f̂ (1)(x)

f (1)(x)
+ p(2)(x) log

f̂ (2)(x)

f (2)(x)
dx (38)

=

∫
p(1)(x)

[
log

p(1)(xA)

f (1)(xA)
+ log

pmid(xj | xA)

f (1)(xj | xA)
+ log

p(1)(xV \A\j | xA∪j)
f (1)(xV \A\j | xA∪j)

]

+ p(2)(x)

[
log

p(2)(xA)

f (2)(xA)
+ log

pmid(xj | xA)

f (1)(xj | xA)
+ log

p(2)(xV \A\j | xA∪j)
f (2)(xV \A\j | xA∪j)

]
dx (39)

= DKL(p(1)(·A)||f (1)(·A)) + Ep(1)DKL(p(1)(·V \A\j | XA∪j)||f (1)(·V \A\j | XA∪j))

+DKL(p(2)(·A)||f (2)(·A)) + Ep(2)DKL(p(2)(·V \A\j | XA∪j)||f (2)(·V \A\j | XA∪j))

+ 2

∫
p(1)(x) + p(2)(x)

2
log

pmid(xj | xA)

f (1)(xj | xA)
dx︸ ︷︷ ︸

=E
pmidDKL(pmid(·j |xA)||f(1)(·j |xA))

. (40)

In (39), we used the fact that f (1)(xj | xA) = f (2)(xj | xA). In (40), we use the linearity of the
integral (which can be safely apply because each resulting “piece” is in [0,+∞]). Since each term
in (40) is in [0,+∞], their sum is in [0,+∞] as well.

We can now look at the sum of KL-divergences we are interested in.

DKL(p(1)||f (1)) +DKL(p(2)||f (2))

=

∫
p(1)(x) log

p(1)

f (1)
dx+

∫
p(2)(x) log

p(2)

f (2)
dx (41)

=

∫
p(1)(x) log

p(1)

f (1)
+ p(2)(x) log

p(2)

f (2)
dx (42)

=

∫
p(1)(x) log

p(1)(x)

f̂ (1)(x)
+ p(1)(x) log

f̂ (1)(x)

f (1)(x)
+ p(2)(x) log

p(2)(x)

f̂ (2)(x)
+ p(2)(x) log

f̂ (2)(x)

f (2)(x)
dx (43)

= DKL(p(1)||f̂ (1)) +DKL(p(2)||f̂ (2)) +

∫
p(1)(x) log

f̂ (1)(x)

f (1)(x)
+ p(2)(x) log

f̂ (2)(x)

f (2)(x)
dx (44)

≥ DKL(p(1)||f̂ (1)) +DKL(p(2)||f̂ (2)) > 0 . (45)

In (42), we use the linearity of the integral (which can be safely applied given the initial integrals
were in [0,+∞]). In (44), we again use the linearity of the integral (which is, again, possible

because each resulting piece are in [0,+∞]). In (45), we use the fact that
∫
p(1)(x) log f̂(1)(x)

f(1)(x)
+

p(2)(x) log f̂(2)(x)
f(2)(x)

dx ∈ [0,+∞] to get the ≥ while the strict inequality holds because either f̂ (1) 6=
p(1) or f̂ (k) 6= p(k).

This implies that

inf
(f(1),f(2))∈Z(j,A)

DKL(p(1)||f (1))+DKL(p(2)||f (2)) = DKL(p(1)||f̂ (1))+DKL(p(2)||f̂ (2)) > 0 .�

The following definition will be useful for the next lemma.
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Definition 17 Given a DAG G with node set V and two nodes i, j ∈ V , we define the following sets:

TGij := {` ∈ V | the immorality i→ `← j is in G} (46)

LGij := DEG(TGij) ∪ {i, j} , (47)

where DEG(S) is the set of descendants of S in G, including S itself.

Lemma 18 Let G be a DAG with node set V . When i→ j 6∈ G and i← j 6∈ G we have

i ⊥⊥G j | V \ LGij . (48)

Proof: By contradiction. Suppose there is a path from (i = a0, a1, ..., ap = j) with p > 1 which is
not d-blocked by V \ LGij in G. We first consider the case where the path contains no colliders.

If the path contains no colliders, then a0 ← a1 or ap−1 → ap. Moreover, since the path is not
d-blocked and both a1 and ap−1 are not colliders, a1, ap−1 ∈ LGij . But this implies that there is a
directed path from i = a0 to a1 and a directed path from j = ap to ap−1. This creates a directed
cycle: either a0 → · · · → a1 → a0 or ap → · · · → ap−1 → ap. This is a contradiction since G is
acyclic.

Suppose there is a collider ak, i.e. ak−1 → ak ← ak+1. Since the path is not d-blocked, there must
exists a node z ∈ DEG(ak) ∪ {ak} such that z 6∈ LGij . If i = ak−1 and j = ak+1, then clearly
z ∈ LGij , which is a contradiction. Otherwise, i 6= ak−1 or j 6= ak+1. Without loss of generality,
assume i 6= ak−1. Clearly, ak−1 is not a collider and since the path is not d-blocked, ak−1 ∈ LGij . But
by definition, LGij also contains all the descendants of ak−1 including z. Again, this is a contradiction
with z 6∈ LGij . �
We recall Theorem 1 from Section 3.1 and present its proof.

Theorem 1 (Identification via score maximization) Suppose the interventional family I∗ is such
that I∗1 := ∅. Let G∗ be the ground truth DAG and Ĝ ∈ arg maxG∈DAG SI∗(G). Assume that the
density model has enough capacity to represent the ground truth distributions, that I∗-faithfulness
holds, that the density model is strictly positive and that the ground truth densities p(k) have finite
differential entropy, respectively Assumptions 1, 2, 3 & 4. Then for λ > 0 small enough, we have that
Ĝ is I∗-Markov equivalent to G∗.

Proof. It is sufficient to prove that, for all G 6∈ I∗-MEC(G∗), SI∗(G∗) > SI∗(G). We use Theorem 10
which states that Ĝ is not I∗-Markov equivalent to G∗ if and only if ĜI∗ does not share its skeleton
or its immoralities with G∗I∗ . The proof is organized in six cases. Cases 1-2 treat when G and G∗ do
not share the same skeleton, cases 3 & 4 when their immoralities differ and cases 5 & 6 when their
immoralities implying interventional nodes ζk differ. In almost every cases, the idea is the same:

1. Use Lemma 18 to find a d-separation which holds in GI∗ and show it does not hold in G∗I∗ ;
2. Use the fact that FI(G) ⊂ MI(G) (by strict positivity), Proposition 9 and the
I∗-faithfulness assumption to obtain an invariance which holds for all (f (k))k∈[K] ∈ FI∗(G)

but not in (p(k))k∈[K];

3. Use the fact that the invariance forces infφ
∑
k∈[K]DKL(p(k)||f (k)

GI∗φ) to be greater than
zero (by Lemma 15 or 16) and;

4. Conclude that SI∗(G∗) > SI∗(G) via Lemma 14.

In this proof, we are exclusively referring to I∗. Thus for notational convenience, we set I := I∗.
Case 1: We consider the graphs G such that there exists i→ j ∈ G∗ but i→ j 6∈ G and i← j 6∈ G.
Let G be the set of all such G. By Lemma 18, i ⊥⊥G j | V \LGij but clearly i 6⊥⊥ G∗j | V \LGij . Hence,
by I-faithfulness (Assumption 2) we have Xi 6⊥⊥ p(1)Xj |XV \LGij

. It implies that p(1) 6∈ M(G), by
Proposition 4.
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For notation convenience, let us define

η(G) := inf
φ

∑
k∈[K]

DKL(p(k)||f (k)
GIφ) . (49)

Note that
η(G) ≥ inf

φ
DKL(p(1)||f (1)

GIφ) ≥ inf
f∈M(G)

DKL(p(1)||f) > 0 , (50)

where the first inequality holds by non-negativity of the KL divergence, the second holds because, for
all φ, f (1)

GIφ ∈M(G) and the third holds by Lemma 15 (which applies here because p(1) 6∈ M(G)).
Using Lemma 14, we can write

SI(G∗)− SI(G) = η(G) + λ(|G| − |G∗|) . (51)

If |G| ≥ |G∗| then clearly SI(G∗) − SI(G) > 0. Let G+ := {G ∈ G | |G| < |G∗|}. To make sure
we have SI(G∗) − SI(G) > 0 for all G ∈ G+, we need to pick λ sufficiently small. Choosing
0 < λ < minG∈G+

η(G)
|G∗|−|G| is sufficient since (and note that minimum exists because the set G+ is

finite and is strictly positive by (50)):

λ < min
G∈G+

η(G)

|G∗| − |G|
(52)

⇐⇒ λ <
η(G)

|G∗| − |G|
∀G ∈ G+ (53)

⇐⇒ λ(|G∗| − |G|) < η(G) ∀G ∈ G+ (54)

⇐⇒ 0 < η(G) + λ(|G| − |G∗|) = SI(G∗)− SI(G) ∀G ∈ G+ . (55)

Case 2: We consider the graphs G such that there exists i→ j ∈ G but i→ j 6∈ G∗ and i← j 6∈ G∗.
We can assume k → ` ∈ G∗ implies k → ` ∈ G or k ← ` ∈ G, since otherwise we are in Case 1.
Hence, it means |G| > |G∗| which in turn implies that SI(G∗) > SI(G).

Cases 1 and 2 completely cover the situations where GI and G∗I do not share the same skeleton.
Next, we assume that GI and G∗I do have the same skeleton (which implies that |G| = |G∗|). The
remaining cases treat the differences in immoralities.

Case 3: Suppose G∗ contains an immorality i → ` ← j which is not present in G. We first show
that ` 6∈ LGij . Suppose the opposite. This means ` is a descendant of both i and j in G. Since G and
G∗ share skeleton and because i → ` ← j is not an immorality in G, we have that i ← ` ∈ G or
`→ j ∈ G, which in both cases creates a cycle. This is a contradiction.

The path (i, `, j) is not d-blocked by V \LGij in G∗ since ` ∈ V \LGij . By I-faithfulness (Assumption 2),
this means that Xi 6⊥⊥ p(1)Xj | XV \LGij

. Since G∗ and G share the same skeleton, we know

i → j and i ← j are not in G. Using Lemma 18, we have that i ⊥⊥G j | V \ LGij . Hence by
Proposition 4, p(1) 6∈ M(G). Similarly to Case 1, this implies that η(G) > 0 which in turn implies
that SI(G∗)− SI(G) > 0 (using the fact |G∗| = |G|).
Case 4: Suppose G contains an immorality i → ` ← j which is not present in G∗. Since G and
G∗ share the same skeleton and ` 6∈ V \ LGij , we know there is a (potentially undirected) path
(i, `, j) which is not d-blocked by V \ LGij in G∗. By I-faithfulness (Assumption 2), we know
that Xi 6⊥⊥ p(1)Xj | XV \LGij

. However by Lemma 18, we have that i ⊥⊥G j | V \ LGij , which

implies, again by Proposition 4, that p(1) 6∈ M(G). Thus, again by the same argument as Case 3,
SI(G∗)− SI(G) > 0.

So far, all cases did not require interventional nodes ζk. Cases 5 and 6 treat the difference in
immoralities implying interventional nodes ζk. Note that the arguments are analog to cases 3 and 4.

Case 5: Suppose that there is an immorality i→ `← ζj in G∗I which does not appear in GI . The
path (i, `, ζj) is not d-blocked by ζ−j ∪ V \LG

I

iζj
in G∗I since ` ∈ ζ−j ∪ V \LG

I

iζj
(by same argument

as presented in Case 3). By I-faithfulness (Assumption 2), this means that

p(1)(xi | xV \LGIiζj
) 6= p(j)(xi | xV \LGIiζj

) . (56)
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Thus, (p(1), p(j)) 6∈ Z(i, V \ LG
I

iζj
) (defined in Equation (35)).

On the other hand, Lemma 18 implies that i ⊥⊥GI ζj | ζ−j ∪ V \ LG
I

iζj
. Thus by Proposition 9 and

since FI(G) ⊂MI(G), we have that for all φ,

f
(1)
GIφ(xi | xV \LGIiζj

) = f
(j)
GIφ(xi | xV \LGIiζj

) i.e. (f
(1)
GIφ, f

(j)
GIφ) ∈ Z(i, V \ LG

I

iζj
) . (57)

This means that SI(G∗) > SI(G) since

SI(G∗)− SI(G) = inf
φ

∑
k∈[K]

DKL(p(k)||f (k)
GIφ) (58)

≥ inf
φ
DKL(p(1)||f (1)

GIφ) +DKL(p(j)||f (j)
GIφ) (59)

≥ inf
(f(1),f(j))∈Z(i,V \LGIiζj )

DKL(p(1)||f (1)) +DKL(p(j)||f (j)) (60)

> 0 . (61)

In (60), we use the fact that, for all φ, (f
(1)
GIφ, f

(j)
GIφ) ∈ Z(i, V \ LG

I

iζj
). The very last strict inequality

holds by Lemma 16, which applies here because (p(1), p(j)) 6∈ Z(i, V \ LG
I

iζj
).

Case 6: Suppose that there is an immorality i→ `← ζj in GI which does not appear in G∗I . The
path (i, `, ζj) is not d-blocked by ζ−j ∪ V \LG

I

iζj
in G∗I , since ` 6∈ ζ−j ∪ V \LG

I

iζj
and both I-DAGs

share the same skeleton. It follows by I-faithfulness (Assumption 2) that

p(1)(xi | xV \LGIiζj
) 6= p(j)(xi | xV \LGIiζj

) . (62)

On the other hand, Lemma 18 implies that i ⊥⊥GI ζj | ζ−j ∪ V \ LG
I

iζj
. Again by the I-Markov

property (Proposition 9), it means that, for all φ,

f
(1)
GIφ(xi | xV \LGIiζj

) = f
(j)
GIφ(xi | xV \LGIiζj

) . (63)

By an argument identical to that of Case 5, it follows that SI(G∗) > SI(G).

The proof is complete since there is no other way in which GI and G∗I can differ in terms of skeleton
and immoralities. �

A.3 Theory for unknown targets

Theorem 1 assumes implicitly that, for each intervention k, the ground truth interventional target
I∗k is known. What if we do not have access to this information? We now present an extension of
Theorem 1 to unknown targets. In this setting, the interventional family I is learned similarly to G.
We denote the ground truth interventional family by I∗ := (I∗1 , · · · , I∗K) and assume that I∗1 := ∅.
We first recall score introduced in Section 3.3:

S(G, I) := sup
φ

K∑
k=1

EX∼p(k) log f (k)(X;MG , RI , φ)− λ|G| − λR|I| , (64)

where f (k)(X;MG , RI , φ) was defined in (15) and |I| =
∑K
k=1 |Ik|. Notice that the assumption

that I∗1 = ∅ is integrated in the joint density of (15) with k = 1 (the row vector RI1: has no effect).
The only difference between SI∗(G) and S(G, I) is that, in the latter, I is considered a variable and
the extra regularizing term −λR|I|.
The result of this section relies on the exact same assumptions as those of Theorem 1, namely
Assumptions 1, 2, 3 & 4.

The next Lemma is an adaptation of Lemma 14 to this new setting.
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Lemma 19 (Rewriting of score differences) Under Assumption 1 & 4, we have

S(G∗, I∗)− S(G, I) = inf
φ

∑
k∈[K]

DKL(p(k)||f (k)
GIφ) + λ(|G| − |G∗|) + λR(|I| − |I∗|) . (65)

Proof. We note that |S(G∗, I∗)| = |SI∗(G∗)− λR|I∗|| <∞, by Lemma 13. This implies that the
difference S(G∗, I∗)− S(G, I) is always well defined.

The rest of the proof is identical to Lemma 14.�

We are now ready to state and prove our identifiability result for unknown targets.

Theorem 2 (Unknown targets identification) Suppose I∗ is such that I∗1 := ∅. Let G∗ be the
ground truth DAG and (Ĝ, Î) ∈ arg maxG∈DAG,I S(G, I). Under the same assumptions as Theorem 1
and for λ, λR > 0 small enough, Ĝ is I∗-Markov equivalent to G∗ and Î = I∗.

Proof: We simply add two cases at the beginning of the proof of Theorem 1 to handle cases where
I 6= I∗ (we will denote them by Case 0.1 and Case 0.2). Similarly to Theorem 1, it is sufficient
to prove that, whenever G 6∈ I∗-MEC(G∗) or I 6= I∗, we have that S(G∗, I∗) > S(G, I). For
convenience, let us define

η(G, I) := inf
φ

∑
k∈[K]

DKL(p(k)||f (k)
GIφ) . (66)

Case 0.1: Let I be the set of all I such that there exists k0 ∈ [K] and j ∈ [d] such that j ∈ I∗k0 but
j 6∈ Ik0 . Let I ∈ I and let G be an arbitrary DAG.

Since the edge ζk0 → j is in G∗I∗ , we have that ζk0 and j are never d-separated. By I∗-faithfulness
(Assumption 2), we have that

p(1)(xj |xπGj ) 6= p(k0)(xj |xπGj ) . (67)

Note that this is true for any conditioning set. It means (p(1), p(k0)) 6∈ Z(j, πGj ) (defined in (35)).

Since j 6∈ Ik, we have by definition from (15) that, for all φ,

f
(1)
GIφ(xj |xπGj ) = f

(k0)
GIφ(xj |xπGj ) i.e. (f

(1)
GIφ, f

(k0)
GIφ) ∈ Z(j, πGj ). (68)

This implies that

η(G, I) ≥ inf
φ
DKL(p(1)||f (1)

GIφ) +DKL(p(k0)||f (k0)
GIφ) (69)

≥ inf
(f(1),f(k0))∈Z(j,πGj )

DKL(p(1)||f (1)) +DKL(p(k0)||f (k0)) (70)

> 0 , (71)

where (70) holds because, for all φ, (f
(1)
GIφ, f

(k0)
GIφ) ∈ Z(j, πGj ) and (71) holds by Lemma 16.

If min{|G| − |G∗|, |I| − |I∗|} ≥ 0, then clearly S(G∗, I∗) − S(G, I) > 0.
Let S := {(G, I) ∈ DAG× I | min{|G| − |G∗|, |I| − |I∗|} < 0}. To make sure we have
S(G∗, I∗)− S(G, I) > 0 for all (G, I) ∈ S, we need to pick λ and λR sufficiently small. Choosing
λ+ λR < min(G,I)∈S

η(G,I)
−min{|G|−|G∗|,|I|−|I∗|} is sufficient since (and note that the minimum exists

because the set S is finite, and is strictly positive by (71)):

λ+ λR < min
(G,I)∈S

η(G, I)

−min{|G| − |G∗|, |I| − |I∗|}
(72)

⇐⇒ λ+ λR <
η(G, I)

−min{|G| − |G∗|, |I| − |I∗|}
∀(G, I) ∈ S (73)

⇐⇒ − (λ+ λR) min{|G| − |G∗|, |I| − |I∗|} < η(G, I) ∀(G, I) ∈ S (74)
⇐⇒ 0 < η(G, I) + (λ+ λR) min{|G| − |G∗|, |I| − |I∗|} ∀(G, I) ∈ S (75)

≤ η(G, I) + λ(|G| − |G∗|) + λR(|I| − |I∗|) (76)
= S(G∗, I∗)− S(G, I) . (77)
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From now on, we can assume I∗k ⊂ Ik for all k ∈ [K], since otherwise we are in Case 0.1.

Case 0.2: Let Ī := {I | [I∗k ⊂ Ik ∀k] and [∃ k0, j s.t. j ∈ Ik0 and j 6∈ I∗k0 ]}. Let I ∈ Ī and let G be
a DAG. We can already notice that |I| > |I∗|.
If |G| ≥ |G∗|, then S(G∗, I∗) − S(G, I) > 0 by (65). Let S̄ := {(G, I) ∈ DAG× Ī | |G| < |G∗|}.
To make sure S(G∗, I∗)− S(G, I) > 0 for all (G, I) ∈ S̄, we need to pick λ sufficiently small.
Choosing λ < min(G,I)∈S̄

η(G,I)+λR(|I|−|I∗|)
|G∗|−|G| is sufficient since this implies

λ <
η(G, I) + λR(|I| − |I∗|)

|G∗| − |G|
∀ (G, I) ∈ S̄ (78)

⇐⇒ λ(|G∗| − |G|) < η(G, I) + λR(|I| − |I∗|) ∀ (G, I) ∈ S̄ (79)

⇐⇒ 0 < η(G, I) + λ(|G| − |G∗|) + λR(|I| − |I∗|) ∀ (G, I) ∈ S̄ (80)
= S(G∗, I∗)− S(G, I) . (81)

Cases 0.1 & 0.2 cover all situations where I 6= I∗. This implies that Î = I∗. For the rest of the
proof, we can assume that I = I∗. By noting that S(G∗, I∗)− S(G, I) = SI∗(G∗)− SI∗(G), we
can apply exactly the same steps as in Theorem 1 to show that Ĝ ∈ I∗-MEC(G∗).

We will end up with multiple conditions on λ and λR. We now make sure they can all be satisfied
simultaneously. Recall the three conditions we derived:

λ+ λR < min
(G,I)∈S

η(G, I)

−min{|G| − |G∗|, |I| − |I∗|}
=: α (82)

λ < min
(G,I)∈S̄

η(G, I) + λR(|I| − |I∗|)
|G∗| − |G|

=: β(λR) (83)

λ < min
G∈G+

η(G, I∗)
|G∗| − |G|

=: γ , (84)

where the third condition comes from the steps of Theorem 1. We can simply pick λR ∈ (0, α) and
λ ∈ (0,min{α− λR, β(λR), γ}). �

A.4 Adapting the score to perfect interventions

The score developed in Section 3.1 is designed for general imperfect interventions. Since perfect
interventions are just a special case of imperfect ones, this score will work on perfect interventions
without problems. However, one can leverage the fact that the interventions are perfect to simplify
the score a little bit.

max
G∈DAG

SI∗(G) (85)

= max
G∈DAG

sup
φ

K∑
k=1

EX∼p(k) log f (k)(x;MG , RI
∗
, φ)− λ|G| (86)

= max
G∈DAG

sup
φ(1)

 K∑
k=1

EX∼p(k) log
∏
j 6∈I∗k

f̃(xj ; NN(MGj � x;φ
(1)
j ))


+ sup
φ(2),...,φ(K)

 K∑
k=2

EX∼p(k) log
∏
j∈I∗k

f̃(xj ; NN(MGj � x;φ
(k)
j ))

− λ|G| (87)

= max
G∈DAG

sup
φ(1)

 K∑
k=1

EX∼p(k) log
∏
j 6∈I∗k

f̃(xj ; NN(MGj � x;φ
(1)
j ))


+ sup
φ(2),...,φ(K)

 K∑
k=2

EX∼p(k) log
∏
j∈I∗k

f̃(xj ; NN(0� x;φ
(k)
j ))

− λ|G| , (88)
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where in (88) we use the fact that the interventions are perfect. In (88), the second sup does not
depend on G, so it can be ignored without changing the arg maxG∈DAG.

Hence, for perfect intervention we use the score

Sperf
I∗ (G) := sup

φ(1)

 K∑
k=1

EX∼p(k) log
∏
j 6∈I∗k

f̃(xj ; NN(MGj � x;φ
(1)
j ))

− λ|G| . (89)

B Additional information

B.1 Synthetic data sets

In this section, we describe how the different synthetic data sets were generated. For each type of data
set, we first sample a DAG following the Erdős-Rényi scheme and then we sample the parameters of
the different causal mechanisms as stated below (in the bulleted list). For 10-node graphs, single node
interventions are performed on every node. For 20-node graphs, interventions target 1 to 2 nodes
chosen uniformly at random. Then, n/(d+ 1) examples are sampled for each interventional setting
(if n is not divisible by d+ 1, some intervention setting may have one extra sample in order to have a
total of n samples). The data are then normalized: we subtract the mean and divide by the standard
deviation. For all data sets, the source nodes are Gaussian with zero mean and variance sampled from
U [1, 2]. The noise variables Nj are mutually independent and sampled from N (0, σ2

j ) ∀j, where
σ2
j ∼ U [1, 2].

For perfect intervention, the distribution of intervened nodes is replaced by a marginal N (2, 1). This
type of intervention, that produce a mean-shift, is similar to those used in [15, 42]. For imperfect
interventions, besides the initial parameters, an extra set of parameters were sampled by perturbing
the initial parameters as described below. For nodes without parents, the distribution of intervened
nodes is replaced by a marginal N (2, 1). Both for the perfect and imperfect cases, we explore other
types of interventions and report the results in Appendix C.5. We now describe the causal mechanisms
and the nature of the imperfect intervention for the three different types of data set:

• The linear data sets are generated following Xj := wTj XπGj
+ 0.4 ·Nj ∀j, where wj is a

vector of |πGj | coefficients each sampled uniformly from [−1,−0.25] ∪ [0.25, 1] (to make
sure there are no w close to 0). Imperfect interventions are obtained by adding a random
vector of U([−5,−2] ∪ [2, 5]) to wj .
• The additive noise model (ANM) data sets are generated followingXj := fj(XπGj

)+0.4·Nj
∀j, where the functions fj are fully connected neural networks with one hidden layer of 10
units and leaky ReLU with a negative slope of 0.25 as nonlinearities. The weights of each
neural network are randomly initialized from N (0, 1). Imperfect interventions are obtained
by adding a random vector of N (0, 1) to the last layer.

• The nonlinear with non-additive noise (NN) data sets are generated following Xj :=
fj(XπGj

, Nj) ∀j, where the functions fj are fully connected neural networks with one
hidden layer of 20 units and tanh as nonlinearities. The weights of each neural network
are randomly initialized from N (0, 1). Similarly to the additive noise model, imperfect
intervention are obtained by adding a random vector of N (0, 1) to the last layer.

B.2 Deep Sigmoidal Flow: Architectural details

A layer of a Deep Sigmoidal Flow is similar to a fully-connected network with one hidden layer,
a single input, and a single output, but is defined slightly differently to ensure that the mapping is
invertible and that the Jacobian is tractable. Each layer l is defined as follows:

h(l)(x) = σ−1(wTσ(a · x+ b)) , (90)

where 0 < wi < 1,
∑
i wi = 1 and ai > 0. In our method, the neural networks NN(·;φ(k)

j )

output the parameters (wj , aj , bj) for each DSF τj . To ensure that the determinant of the Jacobian is
calculated in a numerically-stable way, we follow the recommendations of [18]. While other flows
like the Deep Dense Sigmoidal Flow have more capacity, DSF was sufficient for our use.
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B.3 Optimization

In this section, we show how the augmented Lagrangian is applied, how the gradient is estimated and,
finally, we illustrate the learning dynamics by analyzing an example.

Let us recall the score and the optimization problem from Section 3.2:

Ŝint(Λ) := sup
φ

E
M∼σ(Λ)

[
K∑
k=1

E
X∼p(k)

log f (k)(X;M,φ)− λ||M ||0

]
, (91)

sup
Λ
Ŝint(Λ) s.t. Tr eσ(Λ) − d = 0 . (92)

We optimize for φ and Λ jointly, which yields the following optimization problem:

sup
φ,Λ

E
M∼σ(Λ)

[
K∑
k=1

E
X∼p(k)

log f (k)(X;M,φ)

]
− λ||σ(Λ)||1 s.t. Tr eσ(Λ) − d = 0 , (93)

where we used the fact that EM∼σ(Λ) ||M ||0 = ||σ(Λ)||1. Let us use the notation:

h(Λ) := Tr eσ(Λ) − d. (94)

The augmented Lagrangian transforms the constrained problem into a sequence of unconstrained
problems of the form

sup
φ,Λ

E
M∼σ(Λ)

[
K∑
k=1

E
X∼p(k)

log f (k)(X;M,φ)

]
− λ||σ(Λ)||1 − γth(Λ)− µt

2
h(Λ)2 , (95)

where γt and µt are the Lagrangian multiplier and the penalty coefficient of the tth unconstrained
problem, respectively. In all our experiments, we initialize γ0 = 0 and µ0 = 10−8. Each such
problem is approximately solved using a stochastic gradient descent algorithm (RMSprop [44] in our
experiments). We consider that a subproblem has converged when (95) evaluated on a held-out data
set stops increasing. Let (φ∗t ,Λ

∗
t ) be the approximate solution to subproblem t. Then, γt and µt are

updated according to the following rule:

γt+1 ← γt + µt · h (Λ∗t )

µt+1 ←
{
η · µt, if h (Λ∗t ) > δ · h

(
Λ∗t−1

)
µt, otherwise

(96)

with η = 2 and δ = 0.9. Each subproblem t is initialized using the previous subproblem’s solution
(φ∗t−1,Λ

∗
t−1). The augmented Lagrangian method stops when h(Λ) ≤ 10−8 and the graph formed

by adding an edge whenever σ(Λ) > 0.5 is acyclic.

Gradient estimation. The gradient of (95) w.r.t. φ and Λ is estimated by

∇φ,Λ

[
1

|B|
∑
i∈B

log f (ki)(x(i);M (i), φ)− λth(Λ)− µt
2
h(Λ)2

]
, (97)

where B is an index set sampled without replacement, x(i) is an example from the training set and ki
is the index of its corresponding intervention. To compute the gradient of the likelihood part w.r.t. Λ,
we use the Straight-Through Gumbel-Softmax estimator, adapted to sigmoids [29, 20]. This approach
was already used in the context of causal discovery without interventional data [32, 21]. The matrix
M (i) is given by

M (i) := I(σ(Λ + L(i)) > 0.5) + σ(Λ + L(i))− grad-block(σ(Λ + L(i))) , (98)

whereL(i) is a d×dmatrix filled with independent Logistic samples, I is the indicator function applied
element-wise and the function grad-block is such that grad-block(z) = z and ∇zgrad-block(z) = 0.
This implies that each entry of M (i) evaluates to a discrete Bernoulli sample with probability given
by σ(Λ) while the gradient w.r.t. Λ is computed using the soft Gumbel-Softmax sample. This yields
a biased estimation of the actual gradient of objective (95), but its variance is low compared to the
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popular unbiased REINFORCE estimator (a Monte Carlo estimator relying on the log-trick) [39, 29].
A temperature term can be added inside the sigmoid, but we found that a temperature of one gave
good results.

In addition to this, we experimented with a different relaxation for the discrete variable M . We tried
treating M directly as a learnable parameter constrained in [0, 1] via gradient projection. However,
this approach yielded significantly worse results. We believe that the fact M is continuous in this
setting is problematic, since as an entry of M gets closer and closer to zero, the weights of the
first neural network layer can compensate, without affecting the likelihood whatsoever. This cannot
happen when using the Straight-Through Gumbel-Softmax estimator because the neural network
weights are only exposed to discrete M .

28



Figure 6: Top: Learning curves during training. NLL and NLL on validation are respectively the
(pseudo) negative log-likelihood (NLL) on training and validation sets. AL minus NLL can be thought
of as the acyclicity constraint violation plus the edge sparsity regularizer. AL and AL on validation
set are the augmented Lagrangian objectives on training and validation set, respectively. Middle and
bottom: Entries of the matrix σ(Λ) w.r.t. to the number of iterations (green edges = edge present in
the ground truth DAG, red edges = edge not present). The adjacency matrix to the left correspond to
the ground truth DAG. The other matrices correspond to σ(Λ) at 20 000, 30 000 and 62 000 iterations.
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Learning dynamics. We present in Figure 6 the learning curves (top) and the matrix σ(Λ) (middle
and bottom) as DCDI-DSF is trained on a linear data set with perfect intervention sampled from a
sparse 10-node graph (the same phenomenon was observed in a wide range of settings). In the graph
at the top, we show the augmented Lagrangian and the (pseudo) negative log-likelihood (NLL) on
train and validation set. To be exact, the NLL corresponds to a negative log-likelihood only once
acyclicity is achieved. In the graph representing σ(Λ) (middle), each curve represents a σ(αij): green
edges are edges present in the ground truth DAG and red edges are edges not present. The same
information is presented in matrix form for a few specific iterations and can be easily compared to
the adjacency matrix of the ground truth DAG (white = presence of an edge, blue = absence). Recall
that when a σ(αij) is equal (or close to) 0, it means that the entry ij of the mask M will also be 0.
This is equivalent to say that the edge is not present in the learned DAG.

In this section, we review some important steps of the learning dynamics. At first, the NLL on the
training and validation sets decrease sharply as the model fits the data. Around iteration 5000, the
decrease slows down and the weights of the constraint (namely γ and µ) are increased. This puts
pressure on the entries σ(αij) to decrease. At iteration 20 000, many σ(αij) that correspond to red
edges have diminished close to 0, meaning that edges are correctly removed. It is noteworthy to
mention that the matrix at this stage is close to being symmetric: the algorithm did not yet choose
an orientation for the different edges. While this learned graph still has false-positive edges, the
skeleton is reminiscent of a Markov Equivalence Class. As the training progresses, the weights of
the constraint are greatly increased passed the 20 000th iteration leading to the removal of additional
edges (leading also to an NLL increase). Around iteration 62 000 (the second vertical line), the
stopping criterion is met: the acyclicity constraint is below the threshold (i.e. h(Λ) ≤ 10−8), the
learned DAG is acyclic and the augmented Lagrangian on the validation set is not improving anymore.
Edges with a σ(αij) higher than 0.5 are set to 1 and others set to 0. The learned DAG has a SHD of 1
since it has a reversed edge compared to the ground truth DAG.

Finally, we illustrate the learning of interventional targets in the (perfect) unknown intervention
setting by comparing an example of σ(βkj), the learned targets, with the ground truth targets in
Figure 7. Results are from DCDI-G on 10-node graph with higher connectivity. Each column
corresponds to an interventional target Ik and each row corresponds to a node. In the right matrix, a
dark grey square in position ij means that the node i was intervened on in the interventional setting
Ij . Each entry of the left matrix corresponds to the value of σ(βkj). The binary matrix R (from
Equation 15) is sampled following these entries.

Figure 7: Learned targets σ(βkj) compared to the ground truth targets.

B.4 Baseline methods

In this section, we provide additional details on the baseline methods and cite the implementations that
were used. GIES has been designed for the perfect interventions setting. It assumes linear relations
with Gaussian noise and outputs an I-Markov equivalence classes. In order to obtain the SHD and
SID, we compare a DAG randomly sampled from the returned I-Markov equivalence classes to
the ground truth DAG. CAM has been modified to support perfect interventions. In particular, we
used the loss that was already present in the code (similarly to the loss proposed for DCDI in the
perfect intervention setting). Also, the preliminary neighbor search (PNS) and pruning processes
were modified to not take into account data where variables are intervened on. Note that, while these
two methods yield competitive results in the imperfect intervention setting, they were designed for
perfect interventions: the targeted conditional are not fitted by an additional model (in contrast to
our proposed score), they are simply removed from the score. Finally, JCI-PC is JCI used with the
PC method [31]. The graph to learn is augmented with context variables (one per system variable in
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our case). This modified version of PC can deal with unknown interventions. For the conditional
independence test, we only used the gaussian CI test since using KCI-test was too slow for this
algorithm.

For GIES, we used the implementation from the R package pcalg. For CAM, we modified the
implementation from the R package pcalg. For IGSP and UT-IGSP, we used the implementation
from https://github.com/uhlerlab/causaldag. The cutoff values used for alpha-inv was
always the same as alpha. For JCI-PC, we modified the implementation from the R package pcalg
using code from the JCI repository: https://github.com/caus-am/jci/tree/master/jci.
The normalizing flows that we used for DCDI-DSF were adapted from the DSF implementation
provided by its author [18]. We also used several tools from the Causal Discovery Toolbox (https:
//github.com/FenTechSolutions/CausalDiscoveryToolbox) [22] to interface R with Python
and to compute the SHD and SID metrics.

B.5 Default hyperparameters and hyperparameter search

For all score-based methods, we performed a hyperparameter search. The models were trained on
80% examples and evaluated on the 20% remaining examples. The hyperparameter combination
chosen was the one that induced the lowest negative log-likelihood on the held-out examples. For
DCDI, a grid search was performed over 10 values of the regularization coefficient (see Table 1) for
known interventions (10 hyperparameter combinations in total) and, in the unknown intervention
case, 3 values for the regularization coefficient of the learned targets λR were also explored (30
hyperparameter combinations in total). For GIES and CAM, 50 hyperparameter combinations were
considered using a random search following the sampling scheme of Table 1.

For IGSP, UT-IGSP and JCI-PC, we could not do a similar hyperparameter search since there is no
score available to rank hyperparameter combinations. Thus, all examples were used to fit the model.
Despite this, for IGSP and UT-IGSP, we explored a range of cutoff values around 10−5 (the value
used for all the experiments in [42]): α = {2e− 1, 1e− 1, 1e− 2, 1e− 3, 1e− 5, 1e− 7, 1e− 9}.
In the main text and figures, we report results with α = 1e− 3, which yielded low SHD and SID. For
JCI-PC, we tested the following range of cutoff values: α = {2e− 1, 1e− 1, 1e− 2, 1e− 3} and
report results with α = 1e− 3. Note that in a realistic setting, we do not have access to the ground
truth graphs to choose a good cutoff value.

Table 1: Hyperparameter search spaces for each algorithm

Hyperparameter space

DCDI log10(λ) ∼ U{−7,−6,−5,−4,−3,−2,−1, 0, 1, 2}
log10(λR) ∼ U{−4,−3,−2} (only for unknown interventions)

CAM log10(pruning cutoff) ∼ U [−7, 0]
GIES log10(regularizer coefficient) ∼ U [−4, 4]

Except for the normalizing flows of DCDI-DSF, DCDI-G and DCDI-DSF used exactly the same
default hyperparameters that are summarized in Table 2. Some of these hyperparameters (µ0, γ0),
which are related to the optimization process are presented in Appendix B.3. These hyperparameters
were used for almost all experiments, except for the real-world data set and the two-node graphs with
complex densities, where overfitting was observed. Smaller architectures were tested until no major
overfitting was observed. The default hyperparameters were chosen using small-scale experiments on
perfect-known interventions data sets in order to have a small SHD. Since we observed that DCDI is
not highly sensible to changes in hyperparameter values, only the regularization factors were part of
a more thorough hyperparameter search. The neural networks were initialized following the Xavier
initialization [14]. The neural network activation functions were leaky-ReLU. RMSprop was used as
the optimizer [44] with minibatches of size 64.
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Table 2: Default Hyperparameter for DCDI-G and DCDI-DSF

DCDI hyperparameters

µ0: 10−8, γ0: 0, η: 2, δ: 0.9
Augmented Lagrangian constraint threshold: 10−8

learning rate: 10−3

# hidden units: 16
# hidden layers: 2
# flow hidden units: 16 (only for DCDI-DSF)
# flow hidden layers: 2 (only for DCDI-DSF)

C Additional experiments

C.1 Real-world data set

We tested the methods that support perfect intervention on the flow cytometry data set of Sachs et al.
[40]. The measurements are the level of expression of phosphoproteins and phospholipids in human
cells. Interventions were performed by using reagents to activate or inhibit the measured proteins.
As in Wang et al. [47], we use a subset of the data set, excluding experimental conditions where
the perturbations were not directly done on a measured protein. This subset comprises 5 846 mea-
surements: 1 755 measurements are considered observational, while the other 4 091 measurements
are from five different single node interventions (with the following proteins as targets: Akt, PKC,
PIP2, Mek, PIP3). The consensus graph from Sachs et al. [40] that we use as the ground truth DAG
contains 11 nodes and 17 edges. While the flow cytometry data set is standard in the causal structure
learning literature, some concerns have been raised. The “consensus” network proposed by [40] has
been challenged by some experts [30]. Also, several assumptions of the different models may not be
respected in this real-world data set (for more details, see [30]): i) the causal sufficiency assumption
may not hold, ii) the interventions may not be as specific as stated, and iii) the ground truth network
is possibly not a DAG since feedback loops are common in cellular signaling networks.

Table 3: Results for the flow cytometry data sets

Method SHD SID tp fn fp rev F1 score

IGSP 18 54 4 6 5 7 0.42
GIES 38 34 10 0 41 7 0.33
CAM 35 20 12 1 30 4 0.51

DCDI-G 36 43 6 2 25 9 0.31
DCDI-DSF 33 47 6 2 22 9 0.33

In Table 3 we report SHD and SID for all methods, along with the number of true positive (tp),
false-negative (fn), false positive (fp), reversed (rev) edges, and the F1 score. There are no measures
of central tendencies, since there is only one graph. The modified version of CAM has overall the
best performance: the highest F1 score and a low SID. IGSP has a low SHD, but a high SID, which
can be explained by the relatively high number of false negative. DCDI-G and DCDI-DSF have
SHDs comparable to GIES and CAM, but higher than IGSP. In terms of SID, they outperform IGSP,
but not GIES and CAM. Finally, the DCDI models have F1 scores similar to that of GIES. Hence, we
conclude that DCDI performs comparably to the state of the art on this data set, while none of the
methods show great performance across the board.

Hyperparameters. We report the hyperparameters used for Table 3. IGSP used the KCI-test with a
cutoff value of 10−3. Hyperparameters for CAM and GIES were chosen following the hyperparameter
search described in Appendix B.5. For DCDI, since overfitting was observed, we included some
hyperparameters related to the architecture in the hyperparameter grid search (number of hidden
units: {4, 8}, number of hidden layers: {1, 2} and only for DSF, number of flow hidden units: {4, 8},
number of flow layers: {1, 2}), and used the scheme described in Appendix B.5 for choosing the
regularization coefficient.
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C.2 Learning causal direction from complex distributions

To show that insufficient capacity can hinder learning the right causal direction, we used toy data
sets with simple 2-node graphs under perfect and imperfect interventions. We show, in Figure 8
and 9, the joint densities respectively learned by DCDI-DSF and DCDI-G. We tested two different
data sets: X and DNA, which corresponds to the left and right column, respectively. In both data
sets, we experimented with perfect and imperfect interventions, on both the cause and the effect,
i.e. I = (∅, {1}, {2}). In both figures, the top row corresponds to the learned densities when no
intervention are performed. The bottom row corresponds to the learned densities under an imperfect
intervention on the effect variable (changing the conditional).

Figure 8: Joint density learned by DCDI-DSF. White dots are data points and the color represents
the learned density. The x-axis is cause and the y-axis is the effect. First row is observational while
second row is with an imperfect intervention on the effect.

Figure 9: Joint density learned by DCDI-G. White dots are data points and the color represents the
learned density. The x-axis is cause and the y-axis is the effect. First row is observational while
second row is with an imperfect intervention on the effect.

For the X data set, both under perfect and imperfect interventions, the incapacity of DCDI-G to
model this complex distribution properly makes it conclude (falsely) that there is no dependency
between the two variables (the µ outputted by DCDI-G is constant). Conversely, for the DNA data
set with perfect interventions, it does infer the dependencies between the two variables and learn
the correct causal direction, although the distribution is modeled poorly. Notice that, for the DNA
data set with imperfect interventions, the lack of capacity of DCDI-G has pushed it to learn the same
density with and without interventions (compare the two densities in the second column of Figure 9;
the learned density functions remain mostly unchanged from top to bottom). This prevented DCDI-G
from learning the correct causal direction, while DCDI-DSF had no problem. We believe that if the
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imperfect interventions were more radical, DCDI-G could have recovered the correct direction even
though it lacks capacity. In all cases, DCDI-DSF can easily model these functions and systematically
infers the right causal direction.

While the proposed data sets are synthetic, similar multimodal distributions could be observed in real-
world data sets due to latent variables that are parent of only one node (i.e., that are not confounders).
A hidden variable that act as a selector between two different mechanisms could induce distributions
similar to those in Figures 8 and 9. In fact, this idea was used to produce the synthetic data sets,
i.e., a latent variable z ∈ {0, 1} was sampled and, according to its value, examples were generated
following one of two mechanisms. The X dataset (second column in the figures) was generated by
two linear mechanisms in the following way:

y :=

{
wx+N z = 0

−wx+N z = 1,

where N is a Gaussian noise and w was randomly sampled from [−1,−0.25] ∪ [0.25, 1].

C.3 Scalability experiments

Figure 10 presents two experiments which study the scalability of various methods in terms of number
of examples (left) and number of variables (right). In these experiments, the runtime was restricted
to 12 hours while the RAM memory was restricted to 16GB. All experiments considered perfect
interventions. Experiments from Figure 10 were run with fixed hyperparameters. DCDI. Same as
Table 2 except µ0 = 10−2, # hidden units = 8 and λ = 10−1. CAM. Pruning cutoff = 10−3.
Preliminary neighborhood selection was performed in the large graph experiments (otherwise CAM
cannot run on 50 nodes in less than 12 hours). GIES. Regularizing parameter = 1. IGSP. The
suffixes -G and -K refers to the partial correlation test and the KCI-test, respectively. The α parameter
is set to 10−3.

Number of examples. DCDI was the only algorithm supporting nonlinear relationships that could
run on as much as 1 million examples without running out of time or memory. We believe different
trade-offs between SHD and SID could be achieved with different hyperparameters, especially for
GIES and CAM which achieved very good SID but poor SHD.

Number of variables. We see that using a GPU starts to pay off for graphs of 50 nodes or more.
For 10-50 nodes data sets, DCDI-GPU outperforms the other methods in terms of SHD and SID,
while maintaining a runtime similar to CAM. For the hundred-node data sets, the runtime of DCDI
increases significantly with a SHD/SID performance comparable to the much faster GIES. We believe
the weaker performance of DCDI in the hundred-node setting is due to the fact that the conditionals
are high dimensional functions which are prone to overfitting. Also, we believe this runtime could
be significantly reduced by limiting the number of parents via preliminary neighborhood selection
similar to CAM [4]. This would have the effect of reducing the cost of computing the gradient of w.r.t.
to the neural network parameters. These adaptions to higher dimensionality are left as future work.

C.4 Ablation study

In this section, by doing ablation studies, we show that i) that interventions are beneficial to our
method to recover the DAG, ii) that the proposed losses yield better results than a standard loss
ignoring information about interventions, and iii) that the use of high capacity model is relevant for
nonlinear data sets.

Effect of number of interventions. In a small scale experiment, we show in Figure 11 the effect of
the number of interventions on the performance of DCDI-G. The SHD and SID of DCDI-G and DCD
are shown over ten linear data sets (20-node graph with sparse connectivity) with {0, 5, 10, 15, 20}
perfect interventions. The baseline DCD is equivalent to DCDI-G, but it uses a loss that doesn’t take
into account the interventions. It can first be noticed that, as the number of interventions increases,
the performance of DCDI-G increases. This increase is particularly noticeable from the purely
interventional data to data with 5 interventions. While DCD’s performance also increases in terms
of SHD, it seems to have no clear gain in terms of SID. Also, DCDI-G with interventional data is
always better than DCD showing that the proposed loss for perfect interventions is pertinent. Note
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Figure 10: We report the runtime (in hours), SHD and SID of multiple methods in multiple settings.
The horizontal dashed lines at 12 hours represents the time limit imposed. When a curve reaches
this dashed line, it means that the method could not finish within 12 hours. We write ≥ 16G when
the RAM memory needed by the algorithm exceeded 16GB. All data sets have 10 interventional
targets containing 0.1d targets. We considered perfect interventions. Left: Different data set sizes.
Ten nodes ANM data with connectivity e = 1. Right: Different number of variables. NN data set
with connectivity e = 4 and 104 samples. Each curve is an average over 5 different datasets while the
error bars are %95 confidence intervals computed via bootstrap.

that the first two boxes are the same since DCDI-G on observational data is equivalent to DCD (the
experiment was done only once).

Relevance of DCDI score to leverage interventional data. In a larger scale experiment, with the
same data sets used in the main text (Section 4), we compare DCDI-G and DCDI-DSF to DCD
and DCD-no-interv for perfect/known, imperfect/known and perfect/unknown interventions (shown
respectively in Appendix C.4.1, C.4.2, and C.4.3). The values reported are the mean and the standard
deviation of SHD and SID over ten data sets of each condition. DCD-no-interv is DCDI-G applied
to purely observational data. These purely observational data sets were generated from the same
CGM as the other data set containing interventions and had the same total sample size. For SHD, the
advantage of DCDI over DCD and DCD-no-interv is clear over all conditions. For SID, DCDI has no
advantage for sparse graphs, but is usually better for graphs with higher connectivity. As in the first
small scale experiment, the beneficial effect of interventions is clear. Also, these results show that the
proposed losses for the different type of interventions are pertinent.

Relevance of neural network models. As a sanity check of our proposed method, we trained
DCDI-G without hidden layers, i.e. a linear model. In Table 4, 5 and 6, we report the mean and
standard deviation of SHD and SID over ten 20-node graphs for DCDI-linear and compare it to
results obtained for DCDI-G and DCDI-DSF (both using hidden layers). As expected, this linear
version of DCDI has competitive results for the linear data set, but poorer results on nonlinear data
sets, showing the interest of using high capacity models.
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Figure 11: SHD and SID for DCDI-G and DCD on data sets with a different number of interventional
settings.

Table 4: Results for the linear data set with perfect intervention

20 nodes, e = 1 20 nodes, e = 4

Method SHD SID SHD SID
DCDI-linear 5.9± 7.6 7.1± 6.9 16.0± 6.7 98.3± 31.4

DCDI-G 5.4± 4.5 13.4± 12.0 23.7± 5.6 112.8± 41.8

DCDI-DSF 3.6± 2.7 6.0± 5.4 16.6± 6.4 92.5± 40.1

Table 5: Results for the additive noise model data set with perfect intervention

20 nodes, e = 1 20 nodes, e = 4

Method SHD SID SHD SID
DCDI-linear 29.6± 15.4 24.8± 18.4 66.2± 13.7 219.0± 41.7

DCDI-G 21.8± 30.1 11.6± 13.1 35.2± 13.2 109.8± 44.6

DCDI-DSF 4.3± 1.9 19.7± 12.6 26.7± 16.9 105.3± 22.7
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Table 6: Results for the nonlinear with non-additive noise data set with perfect intervention

20 nodes, e = 1 20 nodes, e = 4

Method SHD SID SHD SID
DCDI-linear 19.8± 12.7 14.2± 9.2 45.6± 12.0 177.9± 27.6

DCDI-G 13.9± 20.3 13.7± 8.1 16.8± 8.7 82.5± 38.1

DCDI-DSF 8.3± 4.1 32.4± 17.3 11.8± 2.1 102.3± 34.5
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C.4.1 Perfect interventions

Table 7: Results for the linear data set with perfect intervention

10 nodes, e = 1 10 nodes, e = 4 20 nodes, e = 1 20 nodes, e = 4

Method SHD SID SHD SID SHD SID SHD SID
DCD 6.6± 3.6 14.1± 11.5 24.4± 6.0 67.0± 9.2 18.2± 15.8 30.9± 21.7 56.7± 10.2 227.0± 38.6

DCD-no-interv 8.9± 2.8 19.5± 10.9 26.7± 5.9 69.0± 11.2 24.6± 20.5 31.2± 22.8 64.4± 11.4 292.9± 28.9

DCDI-G 1.3± 1.9 0.8± 1.8 3.3± 2.1 10.7± 12.0 5.4± 4.5 13.4± 12.0 23.7± 5.6 112.8± 41.8

DCDI-DSF 0.9± 1.3 0.6± 1.9 3.7± 2.3 18.9± 14.1 3.6± 2.7 6.0± 5.4 16.6± 6.4 92.5± 40.1

Table 8: Results for the additive noise model data set with perfect intervention

10 nodes, e = 1 10 nodes, e = 4 20 nodes, e = 1 20 nodes, e = 4

Method SHD SID SHD SID SHD SID SHD SID
DCD 11.5± 6.6 18.2± 11.8 30.4± 3.8 75.5± 4.6 39.3± 28.4 39.8± 33.3 62.7± 14.2 241.0± 44.8

DCD-no-interv 11.6± 8.8 15.8± 12.1 21.3± 5.2 63.5± 12.3 41.7± 44.1 36.2± 27.1 43.7± 9.2 226.1± 42.8

DCDI-G 5.2± 7.5 2.4± 4.9 4.3± 2.4 16.0± 11.9 21.8± 30.1 11.6± 13.1 35.2± 13.2 109.8± 44.6

DCDI-DSF 4.2± 5.6 5.6± 5.5 5.5± 2.4 23.9± 14.3 4.3± 1.9 19.7± 12.6 26.7± 16.9 105.3± 22.7

Table 9: Results for the nonlinear with non-additive noise data set with perfect intervention

10 nodes, e = 1 10 nodes, e = 4 20 nodes, e = 1 20 nodes, e = 4

Method SHD SID SHD SID SHD SID SHD SID
DCD 5.9± 6.9 10.9± 10.4 15.7± 4.9 53.0± 9.9 28.7± 13.0 29.7± 9.3 29.3± 8.9 163.1± 48.4

DCD-no-interv 11.0± 9.3 9.9± 11.0 18.4± 6.4 56.4± 11.0 16.5± 22.8 31.9± 17.5 31.6± 11.3 160.3± 46.3

DCDI-G 2.3± 3.6 2.7± 3.3 2.4± 1.6 13.9± 8.5 13.9± 20.3 13.7± 8.1 16.8± 8.7 82.5± 38.1

DCDI-DSF 7.0± 10.7 7.8± 5.8 1.6± 1.6 7.7± 13.8 8.3± 4.1 32.4± 17.3 11.8± 2.1 102.3± 34.5

C.4.2 Imperfect interventions

Table 10: Results for the linear data set with imperfect intervention

10 nodes, e = 1 10 nodes, e = 4 20 nodes, e = 1 20 nodes, e = 4

Method SHD SID SHD SID SHD SID SHD SID
DCD 10.6± 5.4 24.6± 18.2 24.0± 4.1 67.2± 7.6 21.2± 11.5 56.0± 31.5 56.7± 9.0 268.0± 25.4

DCD-no-interv 6.8± 4.4 19.5± 13.2 27.4± 4.4 74.0± 7.2 19.8± 9.2 48.2± 30.6 58.2± 9.9 288.6± 31.6

DCDI-G 2.7± 2.8 8.2± 8.8 5.2± 3.5 25.1± 12.9 15.6± 14.5 29.1± 23.4 34.0± 7.7 180.9± 44.5

DCDI-DSF 1.3± 1.3 4.2± 4.0 1.7± 2.4 10.2± 14.9 6.9± 6.3 22.7± 21.9 21.7± 8.1 137.4± 34.3

Table 11: Results for the additive noise model data set with imperfect intervention

10 nodes, e = 1 10 nodes, e = 4 20 nodes, e = 1 20 nodes, e = 4

Method SHD SID SHD SID SHD SID SHD SID
DCD 12.0± 9.2 14.8± 10.4 24.3± 3.8 64.5± 11.1 51.7± 41.7 44.5± 20.0 54.1± 12.0 196.6± 37.2

DCD-no-interv 14.6± 4.3 12.1± 11.8 24.8± 4.8 69.3± 8.3 49.5± 36.0 32.7± 22.7 41.2± 8.1 197.7± 50.1

DCDI-G 6.2± 5.4 7.6± 11.0 13.1± 2.9 48.1± 9.1 30.5± 33.0 12.5± 8.8 43.1± 10.2 96.6± 47.1

DCDI-DSF 13.4± 8.4 17.9± 10.5 14.4± 2.4 53.2± 8.2 13.1± 4.5 43.5± 19.2 50.5± 11.4 172.1± 19.6
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Table 12: Results for the nonlinear with non-additive noise data set with imperfect intervention

10 nodes, e = 1 10 nodes, e = 4 20 nodes, e = 1 20 nodes, e = 4

Method SHD SID SHD SID SHD SID SHD SID
DCD 12.7± 8.4 11.8± 7.3 15.2± 3.7 52.2± 9.1 40.4± 54.7 45.2± 43.9 30.5± 8.0 151.2± 41.7

DCD-no-interv 13.6± 9.7 13.0± 8.1 14.8± 3.5 51.7± 12.5 37.1± 40.7 57.1± 56.2 31.3± 5.5 162.3± 40.5

DCDI-G 3.9± 3.9 7.5± 6.5 7.3± 2.2 28.0± 10.5 18.2± 28.8 36.9± 37.0 21.7± 8.0 127.3± 40.1

DCDI-DSF 5.3± 4.2 16.3± 10.0 5.9± 3.2 35.1± 12.3 13.2± 5.1 76.5± 57.8 16.8± 5.3 143.6± 48.8

C.4.3 Unknown interventions

Table 13: Results for the linear data set with perfect intervention with unknown targets

10 nodes, e = 1 10 nodes, e = 4 20 nodes, e = 1 20 nodes, e = 4

Method SHD SID SHD SID SHD SID SHD SID
DCD 6.6± 3.6 14.1± 11.5 24.4± 6.0 67.0± 9.2 18.2± 15.8 30.9± 21.7 56.7± 10.2 227.0± 38.6

DCD-no-interv 8.9± 2.8 19.5± 10.9 26.7± 5.9 69.0± 11.2 24.6± 20.5 31.2± 22.8 64.4± 11.4 292.9± 28.9

DCDI-G 5.3± 3.7 12.9± 11.5 5.2± 3.0 24.3± 15.3 15.4± 10.3 30.8± 18.6 39.2± 8.7 173.7± 45.6

DCDI-DSF 3.9± 4.3 7.1± 7.1 7.1± 3.6 35.8± 12.5 4.3± 2.4 18.4± 7.3 29.7± 12.6 147.8± 42.7

Table 14: Results for the additive noise model data set with perfect intervention with unknown targets

10 nodes, e = 1 10 nodes, e = 4 20 nodes, e = 1 20 nodes, e = 4

Method SHD SID SHD SID SHD SID SHD SID
DCD 11.5± 6.6 18.2± 11.8 30.4± 3.8 75.5± 4.6 39.3± 28.4 39.8± 33.3 62.7± 14.2 241.0± 44.8

DCD-no-interv 11.6± 8.8 15.8± 12.1 21.3± 5.2 63.5± 12.3 41.7± 44.1 36.2± 27.1 43.7± 9.2 226.1± 42.8

DCDI-G 7.6± 10.3 5.0± 5.4 9.1± 3.8 37.5± 14.1 41.3± 39.2 22.9± 15.5 39.9± 18.8 153.7± 50.3

DCDI-DSF 11.9± 8.8 13.8± 7.9 6.6± 2.6 32.6± 14.1 22.3± 31.9 33.1± 17.5 42.5± 18.7 152.9± 53.4

Table 15: Results for the nonlinear with non-additive noise data set with perfect intervention with
unknown targets

10 nodes, e = 1 10 nodes, e = 4 20 nodes, e = 1 20 nodes, e = 4

Method SHD SID SHD SID SHD SID SHD SID
DCD 5.9± 6.9 10.9± 10.4 15.7± 4.9 53.0± 9.9 28.7± 13.0 29.7± 9.3 29.3± 8.9 163.1± 48.4

DCD-no-interv 11.0± 9.3 9.9± 11.0 18.4± 6.4 56.4± 11.0 16.5± 22.8 31.9± 17.5 31.6± 11.3 160.3± 46.3

DCDI-G 3.4± 4.2 6.9± 7.5 3.3± 1.3 20.4± 10.4 21.8± 32.1 20.9± 12.3 20.1± 8.1 104.6± 47.1

DCDI-DSF 7.8± 7.9 11.8± 5.7 3.3± 1.2 23.2± 9.1 27.4± 30.9 49.3± 15.7 22.2± 10.4 131.0± 41.0

C.5 Different kinds of interventions

In this section, we compare DCDI to IGSP using data sets under different kinds of interventions. We
report results in tabular form for 10-node and 20-node graphs. For the perfect interventions, instead
of replacing the target conditional distribution by the marginal N (2, 1) (as in the main results), we
used a marginal that doesn’t involve a mean-shift: U [−1, 1]. The results reported in Tables 16, 17,
18 of Section C.5.1 are the mean and the standard deviation of SHD and SID over ten data sets
of each condition. From these results, we can conclude that DCDI-G still outperforms IGSP and,
by comparing to DCD (DCDI-G with a loss that doesn’t take into account interventions), that the
proposed loss is still beneficial for this kind of interventions. It has competitive results compared to
GIES and CAM on the linear data set and it outperforms them on the other data sets.

For imperfect intervention, we tried more modest changes in the parameters. For the linear data set, an
imperfect intervention consisted of adding U [0.5, 1] to wj if wj > 0 and subtracting if wj <= 0. It
was done this way to ensure that the intervention would not remove dependencies between variables.
For the additive noise model and the nonlinear with non-additive noise data sets,N (0, 0.1) was added
to each weight of the neural networks. Results are reported in Tables 19, 20, 21 of Section C.5.2.
These smaller changes made the difference between DCD and DCDI imperceptible. For sparse
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graphs, IGSP has a better or comparable performance to DCDI. For graphs with higher connectivity,
DCDI often has a better performance than IGSP.

C.5.1 Perfect interventions

Table 16: Results for the linear data set with perfect intervention

10 nodes, e = 1 10 nodes, e = 4 20 nodes, e = 1 20 nodes, e = 4

Method SHD SID SHD SID SHD SID SHD SID
IGSP 4.0± 4.8 15.7± 15.4 28.8± 2.0 72.2± 5.1 9.7± 8.7 45.1± 45.4 68.1± 13.6 295.4± 27.6

GIES 0.3± 0.5 0.0± 0.0 4.0± 6.5 6.7± 17.7 1.5± 1.2 0.3± 0.9 49.4± 22.2 111.9± 51.4

CAM 0.6± 1.0 0.0± 0.0 11.8± 4.3 32.2± 17.2 6.3± 7.4 7.6± 9.8 91.4± 21.3 181.7± 60.5

DCD 6.3± 3.4 14.8± 10.6 26.1± 3.3 66.4± 11.4 11.1± 4.7 45.8± 22.8 49.0± 12.0 258.6± 41.6

DCDI-G 0.4± 0.7 1.3± 2.1 7.5± 1.4 29.7± 8.2 3.2± 3.2 12.1± 11.2 21.0± 4.9 147.6± 49.5

Table 17: Results for the additive noise model data set with perfect intervention

10 nodes, e = 1 10 nodes, e = 4 20 nodes, e = 1 20 nodes, e = 4

Method SHD SID SHD SID SHD SID SHD SID
IGSP 5.7± 2.3 23.4± 13.6 32.8± 2.4 79.3± 3.2 14.9± 8.1 78.8± 64.6 80.5± 6.4 337.6± 27.3

GIES 7.5± 5.1 2.3± 2.5 9.2± 2.9 27.1± 11.5 23.8± 18.4 3.1± 4.4 89.6± 14.7 143.9± 53.1

CAM 6.3± 6.9 0.0± 0.0 6.3± 3.8 14.6± 20.1 9.2± 14.3 13.5± 25.1 106.2± 14.6 96.2± 57.9

DCD 6.4± 4.6 22.0± 14.7 31.1± 3.4 77.4± 3.1 18.1± 8.0 51.5± 41.5 55.7± 8.3 261.3± 22.5

DCDI-G 0.9± 1.2 3.9± 6.4 5.2± 1.9 24.0± 9.3 6.5± 5.6 17.9± 19.1 26.8± 7.0 94.4± 41.5

Table 18: Results for the nonlinear with non-additive noise data set with perfect intervention

10 nodes, e = 1 10 nodes, e = 4 20 nodes, e = 1 20 nodes, e = 4

Method SHD SID SHD SID SHD SID SHD SID
IGSP 6.6± 3.9 25.8± 17.9 31.1± 3.3 77.1± 5.7 14.4± 4.8 63.8± 26.5 79.7± 8.1 341.4± 18.1

GIES 6.2± 3.5 0.9± 1.5 9.5± 3.6 29.0± 17.7 12.2± 2.1 3.4± 3.2 63.8± 11.1 124.9± 36.9

CAM 4.1± 3.8 2.3± 3.4 11.3± 4.2 35.4± 20.8 4.2± 2.3 10.9± 10.3 106.6± 15.7 144.2± 51.8

DCD 6.6± 3.5 18.1± 8.1 20.6± 3.9 65.8± 9.9 9.4± 4.9 25.6± 16.2 28.6± 6.8 188.0± 28.7

DCDI-G 2.1± 1.5 4.6± 5.4 5.0± 4.3 28.8± 17.6 6.4± 3.8 15.1± 8.0 12.2± 2.7 96.1± 18.9

C.5.2 Imperfect interventions

Table 19: Results for the linear data set with imperfect intervention

10 nodes, e = 1 10 nodes, e = 4 20 nodes, e = 1 20 nodes, e = 4

Method SHD SID SHD SID SHD SID SHD SID
IGSP 1.1± 1.1 5.4± 5.4 28.7± 3.2 72.4± 6.7 4.2± 3.9 17.7± 12.3 86.1± 12.3 289.8± 26.3

DCD 3.8± 3.6 9.4± 6.4 27.7± 3.4 74.6± 3.5 27.2± 22.3 39.3± 20.5 65.0± 8.0 306.8± 26.3

DCDI-G 4.7± 4.5 11.5± 9.5 27.4± 4.9 73.8± 5.4 29.6± 16.5 37.7± 14.5 62.8± 6.5 303.2± 27.6

DCDI-DSF 4.1± 2.3 10.3± 7.5 24.3± 5.3 69.1± 8.7 12.2± 2.9 42.6± 18.3 56.1± 9.2 291.4± 35.7

Table 20: Results for the additive noise model data set with imperfect intervention

10 nodes, e = 1 10 nodes, e = 4 20 nodes, e = 1 20 nodes, e = 4

Method SHD SID SHD SID SHD SID SHD SID
IGSP 5.7± 4.0 17.4± 13.4 30.3± 4.0 73.9± 11.3 12.5± 6.6 44.9± 26.7 85.8± 4.4 344.0± 9.8

DCD 12.0± 10.3 11.3± 8.4 23.5± 2.1 69.7± 2.5 39.5± 42.3 28.2± 13.9 50.9± 7.1 247.8± 36.6

DCDI-G 12.7± 9.1 11.8± 6.5 21.7± 4.3 65.2± 9.2 16.2± 18.0 27.8± 13.1 46.2± 5.9 240.1± 26.3

DCDI-DSF 8.1± 8.2 15.8± 9.3 23.3± 6.3 68.7± 8.2 12.3± 4.1 39.9± 19.5 51.0± 7.1 257.7± 31.6
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Table 21: Results for the nonlinear with non-additive noise data set with imperfect intervention

10 nodes, e = 1 10 nodes, e = 4 20 nodes, e = 1 20 nodes, e = 4

Method SHD SID SHD SID SHD SID SHD SID
IGSP 7.0± 5.7 22.7± 19.5 29.4± 5.0 74.2± 7.3 18.7± 7.1 86.3± 37.1 81.6± 6.9 344.4± 20.5

DCD 9.4± 8.9 13.3± 11.0 15.1± 3.7 54.2± 9.8 28.5± 25.0 25.5± 16.8 32.7± 9.8 177.1± 37.5

DCDI-G 6.7± 5.1 13.0± 9.7 14.6± 3.3 53.9± 9.1 28.9± 33.7 25.2± 15.2 32.3± 7.9 177.0± 55.8

DCDI-DSF 12.8± 9.6 22.9± 14.8 14.4± 4.8 54.2± 10.3 13.3± 5.3 54.2± 20.9 28.6± 8.9 199.5± 32.7

C.6 Evaluation on unseen interventional distributions

As advocated by Gentzel et al. [13], we present interventional performance measures for the flow
cytometry data set of Sachs et al. [40] and for the nonlinear with non-additive noise data set. In-
terventional performance refers to the ability of the causal graph to model the effect of unseen
interventions. To evaluate this, methods are trained on all the data, except for data coming from one
interventional setting. Then, we evaluate the likelihood of the fitted model on the remaining unseen
interventional distribution. Since some algorithms do not model distributions, for each method,
given its estimated causal graph, we fit a distribution using a normalizing flow model, enabling a
fair comparison. We report the log-likelihood evaluated on an unseen intervention. Note that when
evaluating the likelihood, we ignore the conditional of the targeted node.

For the nonlinear data sets with non-additive noise, we report in Figure 12 boxplots over 10 dense
graphs (e = 4) of 10 nodes. For each graph, one interventional setting was chosen randomly as the
unseen intervention. DCDI-G and DCDI-DSF have the best performance, as was the case for the
SHD and SID.
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Figure 12: Log-likelihood on unseen interventional distributions of the nonlinear with non-additive
noise data sets.

For Sachs, the data where intervention were applied on the protein Akt were used as the “held-out”
distribution. We report in Figure 13 the log-likelihood and its standard deviation over these data
samples. The ordering of the methods is different from the structural metrics: IGSP has the best
performance followed by DCDI-G (whereas CAM seemed to have the best performance with the
structural metrics).

C.7 Comprehensive results of the main experiments

In this section, we report the main results presented in Section 4 in tabular form for 10-node and
20-node graphs. Recall that the hyperparameters of DCDI, CAM and GIES were selected to yield the
best likelihood on a held-out data set. However, this is not possible for IGSP, UTIGSP and JCI-PC
since they do not have a likelihood model. To make sure these algorithms are represented fairly, we
report their performance for different hyperparameter values. For IGSP and UT-IGSP, we report
performance for the cutoff hyperparameter α = {2e−1, 1e−1, 1e−2, 1e−3, 1e−5, 1e−7, 1e−9}.
This range was chosen to be around the cutoff values used in [47] and [42]. We used the same range
for JCI-PC, but since most runs with α ≤ 1e − 5 would not terminate after 12 hours, we only
report results with α = {2e− 1, 1e− 1, 1e− 2, 1e− 3}. The overall ranking of the methods does
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Figure 13: Log-likelihood on an unseen interventional distribution of the Sachs data set.

not change for different hyperparameters. To be even fairer to these methods, we also report the
performance one obtains by selecting, for every data set, the hyperparameter which yields the lowest
SHD. These results are denoted by IGSP*, UTIGSP* and JCI-PC*. Notice that this is unfair to DCDI,
CAM and GIES which have not tuned their hyperparameters to minimize SHD or SID. Even in this
unfair comparison, DCDI remains very competitive. For IGSP and UTIGSP, we also include results
using partial correlation test (indicated with the suffix -lin) and KCI-test for every data sets. The
reported values in the following tables are the mean and the standard deviation of SHD and SID over
ten data sets of each condition. As stated in the main discussion, our conclusions are similar for
10-node graphs: DCDI has competitive performance in almost all conditions and outperforms the
other methods for graphs with higher connectivity.

C.7.1 Perfect interventions

Table 22: Results for linear data set with perfect intervention

10 nodes, e = 1 10 nodes, e = 4 20 nodes, e = 1 20 nodes, e = 4

Method SHD SID SHD SID SHD SID SHD SID
IGSP*-lin 2.2± 2.0 11.5± 11.4 23.5± 1.8 67.3± 3.3 4.7± 3.7 19.1± 13.4 73.4± 7.9 291.6± 46.4

IGSP* 1.9± 1.8 8.9± 9.5 24.6± 3.3 69.0± 10.3 9.2± 4.8 42.5± 31.8 78.5± 6.8 337.0± 16.4

IGSP(α=2e-1)-lin 9.3± 4.1 18.5± 15.6 26.4± 3.9 71.2± 3.9 37.7± 10.7 42.9± 37.1 94.6± 8.9 271.8± 18.3

IGSP(α=1e-1)-lin 5.8± 3.5 17.1± 13.4 27.4± 2.8 71.6± 4.0 18.7± 4.4 25.9± 12.8 84.4± 12.2 264.8± 27.4

IGSP(α=1e-2)-lin 2.4± 2.1 11.8± 11.0 27.6± 4.2 70.9± 8.2 7.2± 5.3 22.8± 17.3 78.9± 10.6 278.7± 19.5

IGSP(α=1e-3)-lin 2.4± 2.1 11.8± 11.0 26.9± 4.0 68.3± 6.8 8.5± 7.2 33.3± 29.4 82.4± 12.1 304.3± 20.4

IGSP(α=1e-5)-lin 2.4± 2.1 11.9± 11.1 30.6± 3.9 74.8± 7.0 9.4± 5.4 41.1± 36.8 83.9± 11.1 327.8± 9.0

IGSP(α=1e-7)-lin 2.7± 2.5 13.8± 14.3 33.7± 3.3 78.8± 4.8 8.6± 5.1 44.2± 36.0 81.5± 10.6 338.7± 8.8

IGSP(α=1e-9)-lin 2.6± 2.5 13.4± 14.6 29.3± 3.4 71.0± 9.7 11.6± 5.1 65.1± 45.5 82.0± 6.4 341.5± 12.2

IGSP(α=2e-1) 8.1± 3.4 10.7± 11.2 28.6± 5.3 74.0± 6.3 51.8± 10.4 64.7± 46.5 102.4± 9.8 311.4± 13.8

IGSP(α=1e-1) 5.4± 2.8 13.1± 11.1 26.7± 3.7 69.5± 11.1 31.0± 8.6 52.0± 31.9 93.2± 8.2 314.3± 21.3

IGSP(α=1e-2) 2.5± 2.0 10.5± 10.3 31.0± 3.8 78.2± 4.8 12.1± 5.1 40.4± 22.6 86.8± 9.5 336.4± 16.4

IGSP(α=1e-3) 2.8± 2.5 13.1± 13.8 31.3± 2.9 76.0± 8.1 12.4± 4.7 55.6± 30.9 84.7± 10.1 346.3± 8.5

IGSP(α=1e-5) 2.9± 2.7 13.8± 14.6 33.3± 2.5 78.8± 7.1 12.9± 5.6 64.9± 35.3 84.4± 6.1 347.7± 14.0

IGSP(α=1e-7) 4.1± 3.9 15.6± 14.9 33.0± 3.3 77.7± 5.4 15.2± 7.2 75.6± 43.6 83.9± 6.6 350.1± 20.4

IGSP(α=1e-9) 4.0± 3.6 16.3± 17.9 33.6± 3.1 76.2± 5.6 16.7± 6.3 81.9± 35.7 83.0± 6.7 339.7± 13.8

GIES 0.6± 1.3 0.0± 0.0 2.9± 3.0 0.0± 0.0 3.2± 6.3 1.1± 3.5 53.1± 25.8 82.9± 84.9

CAM 1.9± 2.6 1.7± 3.1 10.6± 3.1 34.5± 11.0 5.4± 7.9 8.2± 9.6 91.1± 21.7 167.8± 55.4

DCDI-G 1.3± 1.9 0.8± 1.8 3.3± 2.1 10.7± 12.0 5.4± 4.5 13.4± 12.0 23.7± 5.6 112.8± 41.8

DCDI-DSF 0.9± 1.3 0.6± 1.9 3.7± 2.3 18.9± 14.1 3.6± 2.7 6.0± 5.4 16.6± 6.4 92.5± 40.1
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Table 23: Results for the additive noise model data set with perfect intervention

10 nodes, e = 1 10 nodes, e = 4 20 nodes, e = 1 20 nodes, e = 4

Method SHD SID SHD SID SHD SID SHD SID
IGSP*-lin 7.7± 2.4 24.1± 11.1 22.5± 2.0 64.4± 6.3 14.2± 5.2 58.6± 37.5 75.9± 3.1 307.1± 25.0

IGSP* 5.3± 3.0 20.9± 13.9 25.8± 2.8 68.0± 9.4 13.6± 6.6 69.6± 47.9 76.7± 6.5 332.6± 18.2

IGSP(α=2e-1)-lin 17.0± 5.2 25.0± 13.1 27.3± 3.3 69.2± 7.0 56.3± 10.5 78.3± 47.5 125.3± 7.9 282.9± 27.2

IGSP(α=1e-1)-lin 13.2± 5.3 21.1± 9.8 27.3± 4.4 69.4± 5.6 42.0± 11.9 73.4± 37.5 115.8± 11.6 286.0± 34.6

IGSP(α=1e-2)-lin 11.4± 4.6 26.4± 13.9 27.8± 3.4 72.4± 4.2 21.5± 9.6 64.7± 42.0 101.0± 10.1 298.6± 20.2

IGSP(α=1e-3)-lin 10.4± 3.9 26.6± 11.8 26.9± 2.9 70.2± 7.3 19.0± 8.0 58.1± 34.2 93.2± 4.8 308.5± 18.3

IGSP(α=1e-5)-lin 9.7± 2.3 27.4± 8.8 28.2± 3.9 70.2± 9.9 20.1± 8.6 84.9± 49.1 82.9± 5.3 312.9± 19.6

IGSP(α=1e-7)-lin 9.2± 2.3 28.1± 10.4 27.9± 3.8 72.5± 8.2 16.1± 5.2 63.5± 37.3 84.1± 8.6 322.1± 22.4

IGSP(α=1e-9)-lin 9.8± 2.4 31.5± 12.3 30.9± 4.7 77.7± 5.4 17.2± 6.3 73.1± 37.3 78.7± 5.7 314.8± 23.9

IGSP(α=2e-1) 13.3± 4.9 23.2± 15.9 28.4± 3.3 71.5± 8.3 43.2± 7.6 55.8± 30.0 98.0± 11.2 302.3± 34.7

IGSP(α=1e-1) 9.7± 5.3 21.8± 14.6 29.0± 2.9 73.4± 4.9 30.6± 6.4 64.7± 41.5 88.9± 9.2 320.9± 16.2

IGSP(α=1e-2) 7.3± 3.3 21.9± 11.3 31.4± 2.5 74.3± 9.7 17.2± 6.0 74.7± 40.2 84.1± 10.1 322.8± 15.8

IGSP(α=1e-3) 7.8± 3.4 24.2± 12.1 29.6± 3.8 75.1± 5.6 16.5± 8.9 79.6± 53.6 85.1± 7.7 334.2± 22.0

IGSP(α=1e-5) 8.1± 4.0 29.2± 15.3 30.5± 4.2 77.3± 4.7 16.6± 6.6 79.7± 50.3 81.2± 8.2 324.4± 26.0

IGSP(α=1e-7) 7.3± 2.8 28.5± 11.1 33.0± 1.8 78.3± 4.0 15.3± 6.2 75.0± 45.4 82.5± 6.8 334.3± 22.8

IGSP(α=1e-9) 9.4± 5.2 34.3± 15.6 30.9± 3.9 73.7± 10.3 15.3± 6.7 78.2± 50.6 81.6± 10.8 333.4± 17.2

GIES 9.1± 8.5 1.8± 3.6 9.0± 2.7 23.8± 15.6 40.3± 61.0 7.5± 7.2 103.2± 18.6 120.1± 68.5

CAM 5.2± 3.0 1.0± 1.9 8.5± 3.7 11.5± 13.4 7.5± 6.0 5.6± 4.9 105.7± 13.2 108.7± 61.0

DCDI-G 5.2± 7.5 2.4± 4.9 4.3± 2.4 16.0± 11.9 21.8± 30.1 11.6± 13.1 35.2± 13.2 109.8± 44.6

DCDI-DSF 4.2± 5.6 5.6± 5.5 5.5± 2.4 23.9± 14.3 4.3± 1.9 19.7± 12.6 26.7± 16.9 105.3± 22.7

Table 24: Results for the nonlinear with non-additive noise data set with perfect intervention

10 nodes, e = 1 10 nodes, e = 4 20 nodes, e = 1 20 nodes, e = 4

Method SHD SID SHD SID SHD SID SHD SID
IGSP*-lin 4.4± 2.6 15.2± 11.0 23.3± 1.9 66.0± 7.9 13.4± 3.2 67.4± 27.8 67.0± 9.6 318.4± 19.1

IGSP* 4.1± 2.8 13.6± 11.9 25.4± 3.8 69.4± 5.3 15.3± 4.5 73.0± 28.8 72.7± 9.6 329.4± 21.5

IGSP(α=2e-1)-lin 12.4± 4.5 15.2± 9.1 27.6± 3.9 70.1± 6.3 51.4± 9.1 72.5± 31.1 102.2± 11.5 297.1± 27.5

IGSP(α=1e-1)-lin 9.7± 4.7 17.5± 13.4 26.5± 3.1 68.5± 8.1 35.8± 9.2 83.4± 35.1 93.6± 10.2 293.9± 25.3

IGSP(α=1e-2)-lin 7.1± 3.4 16.4± 12.5 28.7± 2.7 72.7± 4.9 19.0± 5.1 73.7± 33.7 76.0± 12.9 315.7± 14.2

IGSP(α=1e-3)-lin 5.9± 3.5 15.9± 10.5 29.6± 3.0 75.0± 2.8 16.4± 4.4 77.1± 32.2 75.0± 11.0 325.1± 17.7

IGSP(α=1e-5)-lin 6.6± 3.0 21.1± 12.3 27.7± 3.4 73.6± 4.8 15.9± 5.7 79.6± 22.5 73.3± 12.7 323.2± 16.0

IGSP(α=1e-7)-lin 7.2± 4.3 24.3± 15.9 30.1± 4.1 75.4± 5.9 17.3± 3.9 84.1± 22.1 73.2± 11.2 325.5± 23.1

IGSP(α=1e-9)-lin 5.9± 3.5 20.9± 16.1 31.3± 2.1 76.6± 4.0 19.2± 4.2 94.4± 29.9 77.4± 11.3 347.2± 15.5

IGSP(α=2e-1) 10.6± 2.7 12.4± 4.9 27.0± 3.0 70.8± 4.1 48.2± 7.7 97.5± 29.8 89.5± 15.5 306.3± 17.1

IGSP(α=1e-1) 7.7± 4.1 12.1± 8.8 27.5± 5.0 73.0± 5.2 32.3± 7.1 87.5± 39.9 89.4± 16.4 325.4± 21.6

IGSP(α=1e-2) 5.4± 2.5 15.3± 6.4 29.5± 3.5 74.2± 4.9 19.5± 5.2 82.5± 38.5 83.0± 9.5 337.3± 15.9

IGSP(α=1e-3) 6.6± 4.1 21.7± 14.5 31.3± 3.8 75.9± 7.7 17.3± 6.1 83.3± 36.2 80.4± 11.9 331.0± 23.7

IGSP(α=1e-5) 6.3± 3.1 19.8± 12.1 34.0± 4.2 76.8± 12.0 19.3± 4.6 90.8± 32.6 77.0± 9.5 345.2± 9.8

IGSP(α=1e-7) 6.3± 3.3 21.4± 13.1 34.1± 1.9 78.5± 8.4 19.1± 4.0 91.6± 29.0 75.8± 11.1 344.4± 16.6

IGSP(α=1e-9) 5.9± 3.7 21.7± 15.9 34.6± 2.6 79.7± 6.2 18.8± 3.9 94.0± 33.8 77.5± 9.0 341.4± 24.5

GIES 4.4± 6.1 1.0± 1.6 7.9± 4.7 25.5± 13.2 26.9± 50.5 9.5± 7.4 80.1± 36.2 96.7± 59.1

CAM 1.8± 1.5 2.8± 4.4 7.9± 3.6 26.7± 19.0 6.1± 5.2 18.1± 16.3 101.8± 24.5 142.5± 49.1

DCDI-G 2.3± 3.6 2.7± 3.3 2.4± 1.6 13.9± 8.5 13.9± 20.3 13.7± 8.1 16.8± 8.7 82.5± 38.1

DCDI-DSF 7.0± 10.7 7.8± 5.8 1.6± 1.6 7.7± 13.8 8.3± 4.1 32.4± 17.3 11.8± 2.1 102.3± 34.5
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C.7.2 Imperfect interventions

Table 25: Results for the linear data set with imperfect intervention

10 nodes, e = 1 10 nodes, e = 4 20 nodes, e = 1 20 nodes, e = 4

Method SHD SID SHD SID SHD SID SHD SID
IGSP*-lin 2.1± 0.9 11.7± 6.7 20.7± 5.8 61.4± 11.0 4.0± 2.9 17.9± 12.9 62.2± 12.0 256.8± 35.5

IGSP* 3.4± 1.8 14.9± 12.4 24.1± 2.5 68.9± 9.3 8.0± 5.7 43.8± 33.6 75.3± 9.2 338.3± 22.3

IGSP(α=2e-1)-lin 8.5± 2.7 15.5± 8.0 23.2± 7.3 65.8± 11.3 45.3± 9.5 48.0± 28.4 86.1± 15.0 253.7± 29.8

IGSP(α=1e-1)-lin 4.5± 3.3 15.3± 10.8 24.4± 6.6 65.4± 12.6 23.4± 9.9 47.3± 31.8 80.5± 13.7 259.4± 27.2

IGSP(α=1e-2)-lin 2.8± 1.9 12.8± 6.6 26.1± 4.8 69.7± 8.8 6.6± 4.4 20.2± 13.3 68.2± 13.7 279.2± 22.4

IGSP(α=1e-3)-lin 3.9± 2.8 17.2± 9.1 26.4± 5.6 71.1± 9.7 7.0± 5.9 33.2± 26.3 70.6± 16.2 296.3± 20.8

IGSP(α=1e-5)-lin 4.3± 2.6 21.4± 13.4 29.2± 5.1 75.3± 7.4 8.1± 5.0 45.4± 39.9 75.5± 7.7 325.3± 21.3

IGSP(α=1e-7)-lin 3.4± 1.3 19.1± 10.1 29.1± 3.9 74.8± 6.6 10.7± 5.1 52.8± 33.3 77.9± 9.2 333.1± 16.7

IGSP(α=1e-9)-lin 4.6± 3.3 23.7± 20.4 31.3± 4.1 79.1± 5.7 10.5± 5.0 61.6± 33.9 78.0± 8.1 343.4± 23.9

IGSP(α=2e-1) 9.5± 3.6 21.5± 13.6 27.7± 5.4 70.9± 10.4 46.9± 10.3 64.1± 34.6 95.5± 8.6 306.0± 20.0

IGSP(α=1e-1) 5.6± 2.2 15.9± 16.0 26.8± 5.3 68.8± 9.8 32.3± 9.6 54.3± 30.5 89.0± 9.7 315.5± 20.6

IGSP(α=1e-2) 5.0± 2.8 20.2± 15.3 32.0± 3.2 76.3± 5.3 11.8± 9.1 48.8± 43.6 82.7± 12.5 339.2± 11.7

IGSP(α=1e-3) 4.0± 2.7 19.9± 14.3 31.0± 4.1 76.4± 6.8 10.8± 6.0 56.6± 32.3 82.6± 8.6 347.3± 8.3

IGSP(α=1e-5) 5.4± 4.4 23.3± 19.8 30.9± 4.1 80.4± 2.9 12.7± 6.9 71.2± 41.5 80.3± 9.6 347.6± 12.6

IGSP(α=1e-7) 5.1± 2.4 21.6± 12.7 31.4± 2.7 79.5± 3.4 13.8± 7.4 80.4± 42.1 82.2± 7.3 351.0± 13.7

IGSP(α=1e-9) 6.5± 3.3 28.0± 18.4 30.6± 3.9 78.3± 4.4 15.3± 7.7 80.3± 45.2 83.0± 8.8 351.4± 8.6

GIES 13.7± 11.9 20.9± 19.4 14.2± 7.1 47.1± 16.8 33.7± 48.8 20.8± 22.4 78.7± 40.4 194.1± 61.0

CAM 8.1± 6.2 22.6± 18.8 19.4± 4.7 56.0± 10.1 10.5± 5.8 36.3± 23.6 111.7± 16.5 232.5± 23.4

DCDI-G 2.7± 2.8 8.2± 8.8 5.2± 3.5 25.1± 12.9 10.8± 12.0 27.0± 21.3 34.7± 7.1 188.0± 48.8

DCDI-DSF 1.3± 1.3 4.2± 4.0 1.7± 2.4 10.2± 14.9 7.0± 4.0 21.0± 12.5 18.9± 5.9 133.6± 33.9

Table 26: Results for the additive noise model data set with imperfect intervention

10 nodes, e = 1 10 nodes, e = 4 20 nodes, e = 1 20 nodes, e = 4

Method SHD SID SHD SID SHD SID SHD SID
IGSP*-lin 9.1± 4.4 23.6± 12.7 22.8± 4.6 62.0± 9.7 18.1± 6.0 67.5± 26.2 81.2± 8.8 322.9± 13.8

IGSP* 6.2± 3.4 15.8± 9.9 27.6± 2.3 67.2± 8.7 17.0± 3.9 79.7± 33.9 75.7± 7.4 321.0± 23.8

IGSP(α=2e-1)-lin 19.7± 3.4 29.9± 14.9 26.0± 5.0 67.0± 11.7 59.0± 11.9 87.0± 40.0 123.7± 10.4 279.5± 27.6

IGSP(α=1e-1)-lin 17.8± 5.5 35.4± 14.1 26.1± 5.5 68.9± 9.5 40.1± 12.0 71.4± 39.3 119.2± 10.8 285.5± 21.3

IGSP(α=1e-2)-lin 13.0± 4.7 28.1± 12.0 27.7± 3.0 70.0± 5.8 24.9± 9.9 67.1± 35.0 109.6± 11.6 291.6± 29.8

IGSP(α=1e-3)-lin 13.1± 6.0 30.6± 16.0 28.7± 3.6 71.8± 6.2 24.4± 9.0 68.8± 24.9 96.5± 10.6 303.7± 17.3

IGSP(α=1e-5)-lin 11.5± 7.3 31.0± 17.4 28.8± 6.0 69.6± 12.8 21.6± 5.1 81.3± 32.2 90.4± 10.8 314.1± 15.3

IGSP(α=1e-7)-lin 10.6± 5.8 31.0± 15.8 29.5± 5.0 74.1± 8.1 23.3± 5.1 93.2± 35.9 84.2± 8.9 329.3± 15.6

IGSP(α=1e-9)-lin 11.0± 6.4 34.0± 20.7 29.7± 2.8 69.7± 9.5 21.3± 5.7 86.3± 29.7 83.4± 8.1 328.5± 19.2

IGSP(α=2e-1) 11.4± 4.2 23.8± 16.0 29.0± 3.2 72.1± 7.5 48.0± 8.3 77.8± 42.6 97.5± 12.8 307.5± 23.7

IGSP(α=1e-1) 10.6± 5.1 26.2± 15.8 31.3± 3.3 73.7± 7.1 36.9± 6.1 86.9± 42.6 88.8± 11.1 318.5± 25.8

IGSP(α=1e-2) 9.1± 4.4 24.3± 11.5 32.4± 4.1 76.9± 6.8 20.9± 6.2 84.8± 39.9 86.1± 8.4 334.3± 14.2

IGSP(α=1e-3) 8.2± 4.5 24.5± 13.5 32.7± 2.2 78.2± 8.3 19.3± 4.4 78.8± 32.2 82.9± 5.7 325.1± 19.7

IGSP(α=1e-5) 8.0± 3.8 25.8± 14.2 33.8± 2.4 79.4± 4.1 21.4± 5.4 91.8± 40.5 83.1± 7.8 343.4± 14.3

IGSP(α=1e-7) 8.4± 4.3 27.6± 15.3 33.2± 1.9 78.1± 5.9 20.3± 4.7 87.2± 39.6 85.6± 7.4 334.9± 25.2

IGSP(α=1e-9) 8.4± 4.5 28.3± 16.3 34.4± 3.4 79.9± 4.4 19.6± 3.1 90.1± 33.1 79.1± 7.4 332.5± 20.9

GIES 19.9± 10.4 23.0± 10.1 18.9± 6.0 59.5± 11.2 74.4± 59.8 56.4± 43.1 112.2± 23.8 245.2± 36.1

CAM 11.2± 9.3 7.8± 8.7 9.6± 3.0 25.2± 10.8 16.3± 9.9 26.7± 27.2 121.9± 11.6 155.4± 41.5

DCDI-G 6.2± 5.4 7.6± 11.0 13.1± 2.9 48.1± 9.1 26.0± 34.6 23.3± 25.7 36.4± 13.4 88.5± 43.8

DCDI-DSF 13.4± 8.4 17.9± 10.5 14.4± 2.4 53.2± 8.2 15.2± 2.7 49.4± 26.7 44.6± 15.4 149.8± 26.0
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Table 27: Results for the nonlinear with non-additive noise data set with imperfect intervention

10 nodes, e = 1 10 nodes, e = 4 20 nodes, e = 1 20 nodes, e = 4

Method SHD SID SHD SID SHD SID SHD SID
IGSP*-lin 5.6± 3.6 23.0± 19.6 22.5± 2.9 63.4± 6.7 13.8± 6.9 86.0± 71.7 65.1± 12.0 315.4± 46.2

IGSP* 5.1± 4.3 20.8± 16.5 24.3± 2.9 69.1± 5.5 18.2± 7.9 100.3± 74.7 71.7± 5.2 331.7± 35.9

IGSP(α=2e-1)-lin 14.1± 6.1 30.8± 21.8 26.9± 4.1 70.1± 5.8 49.7± 13.2 89.7± 64.3 100.2± 8.8 297.2± 13.9

IGSP(α=1e-1)-lin 9.8± 4.8 24.9± 23.0 25.5± 4.6 68.1± 7.1 39.7± 12.3 104.9± 62.7 90.2± 13.0 289.0± 32.7

IGSP(α=1e-2)-lin 8.0± 4.4 29.6± 22.6 26.4± 3.8 69.9± 4.0 18.1± 8.2 88.6± 58.7 70.6± 13.0 301.0± 40.9

IGSP(α=1e-3)-lin 7.6± 4.8 26.9± 22.4 28.4± 2.3 73.7± 3.7 16.3± 8.8 88.5± 72.6 72.9± 8.7 326.0± 18.1

IGSP(α=1e-5)-lin 7.7± 5.3 29.2± 24.7 27.2± 4.0 69.3± 8.6 18.9± 6.9 112.2± 64.6 70.7± 9.8 320.2± 27.6

IGSP(α=1e-7)-lin 6.7± 4.6 26.3± 19.9 28.8± 3.9 73.1± 5.8 16.8± 7.2 106.1± 63.8 72.6± 9.9 338.0± 17.2

IGSP(α=1e-9)-lin 7.7± 4.3 29.2± 17.9 30.0± 3.2 74.4± 7.4 17.7± 6.8 119.8± 77.9 72.3± 9.6 337.1± 23.8

IGSP(α=2e-1) 12.5± 5.5 27.9± 21.0 26.7± 4.4 71.7± 4.2 52.9± 6.6 113.0± 64.2 91.7± 7.6 311.0± 15.9

IGSP(α=1e-1) 9.5± 5.4 26.7± 24.0 26.2± 4.7 70.6± 6.4 37.1± 10.1 113.0± 79.7 79.5± 9.0 318.2± 30.3

IGSP(α=1e-2) 7.3± 4.5 26.9± 19.4 28.4± 3.3 73.9± 4.3 20.9± 7.7 100.1± 71.9 77.5± 7.5 324.7± 28.7

IGSP(α=1e-3) 7.4± 5.2 29.8± 21.8 29.6± 2.9 76.0± 3.0 22.4± 7.8 125.9± 89.4 76.2± 7.6 343.4± 21.3

IGSP(α=1e-5) 6.6± 5.1 24.9± 20.4 31.0± 2.4 76.5± 4.7 19.6± 8.4 114.6± 79.9 74.4± 5.4 335.7± 24.3

IGSP(α=1e-7) 6.8± 5.2 25.5± 20.2 32.6± 3.3 77.7± 7.2 21.3± 10.0 129.2± 92.4 76.4± 5.6 341.0± 26.0

IGSP(α=1e-9) 6.8± 4.4 25.7± 18.9 33.0± 2.4 77.2± 6.7 21.3± 9.1 127.6± 92.8 76.8± 6.5 348.4± 18.5

GIES 13.2± 11.2 16.7± 13.9 18.1± 5.6 53.7± 15.0 36.8± 41.1 67.0± 46.3 92.7± 29.4 215.8± 63.9

CAM 4.3± 3.3 9.3± 6.8 14.7± 5.1 45.7± 14.9 20.7± 16.2 53.9± 32.9 121.5± 9.3 194.1± 40.3

DCDI-G 3.9± 3.9 7.5± 6.5 7.4± 2.7 29.8± 11.0 10.0± 14.0 39.2± 41.5 20.9± 7.2 124.0± 39.0

DCDI-DSF 5.3± 4.2 16.3± 10.0 5.6± 3.1 32.4± 14.6 12.4± 5.3 70.3± 55.2 16.4± 4.9 139.7± 42.6

C.7.3 Unknown interventions

Table 28: Results for the linear data set with perfect intervention with unknown targets

10 nodes, e = 1 10 nodes, e = 4 20 nodes, e = 1 20 nodes, e = 4

Method SHD SID SHD SID SHD SID SHD SID
UTIGSP*-lin 0.7± 1.6 3.4± 8.4 21.1± 3.6 62.9± 6.0 3.9± 3.6 14.6± 9.1 67.9± 10.8 271.6± 38.6

UTIGSP* 1.7± 2.0 7.4± 10.7 25.8± 2.5 67.4± 8.7 14.3± 4.8 65.5± 32.2 77.9± 5.5 332.2± 19.7

UTIGSP(α=2e-1)-lin 7.7± 3.7 15.1± 15.4 24.5± 6.1 67.6± 8.0 37.6± 10.2 44.4± 32.6 95.9± 9.7 265.6± 24.5

UTIGSP(α=1e-1)-lin 3.7± 3.2 10.2± 12.6 26.4± 2.9 68.9± 6.5 18.4± 5.1 16.8± 7.4 83.4± 13.1 255.8± 20.3

UTIGSP(α=1e-2)-lin 1.7± 2.1 7.0± 9.3 27.2± 5.8 70.1± 9.8 4.6± 4.0 13.9± 11.1 70.1± 12.0 271.2± 19.9

UTIGSP(α=1e-3)-lin 1.6± 2.2 7.2± 10.1 29.6± 5.5 73.1± 9.4 6.9± 6.5 25.6± 31.6 81.0± 12.7 301.1± 17.6

UTIGSP(α=1e-5)-lin 1.2± 1.9 5.1± 8.7 29.4± 4.2 73.2± 7.1 8.8± 6.0 36.7± 29.9 81.5± 11.7 323.1± 14.1

UTIGSP(α=1e-7)-lin 1.8± 2.6 7.6± 13.4 29.4± 3.4 72.3± 9.6 8.8± 5.5 43.3± 40.1 84.8± 9.7 339.6± 11.8

UTIGSP(α=1e-9)-lin 1.8± 2.4 7.8± 13.5 29.2± 3.8 70.2± 7.5 11.6± 7.3 57.3± 48.4 81.2± 5.7 339.4± 13.7

UTIGSP(α=2e-1) 8.5± 3.0 9.6± 8.6 27.8± 4.7 70.7± 10.4 50.3± 15.2 65.1± 49.2 106.7± 9.7 315.7± 24.0

UTIGSP(α=1e-1) 6.2± 3.2 13.0± 10.9 30.5± 2.4 74.3± 6.7 32.5± 7.0 57.5± 35.9 97.4± 9.8 317.5± 22.1

UTIGSP(α=1e-2) 2.6± 2.7 8.6± 9.7 30.4± 4.0 74.6± 7.3 17.9± 5.6 60.5± 27.1 85.9± 8.1 328.2± 20.1

UTIGSP(α=1e-3) 2.7± 2.2 9.3± 10.2 32.1± 3.0 78.1± 4.6 16.9± 6.5 70.2± 34.1 83.2± 8.6 341.4± 8.0

UTIGSP(α=1e-5) 4.3± 2.6 15.2± 11.5 31.5± 2.2 78.4± 8.0 17.0± 6.6 82.8± 37.4 82.2± 5.2 344.2± 14.1

UTIGSP(α=1e-7) 5.0± 3.9 18.2± 16.6 32.0± 2.8 77.1± 5.9 19.5± 6.9 89.7± 37.7 82.8± 4.9 346.0± 17.4

UTIGSP(α=1e-9) 6.0± 3.7 22.2± 18.0 31.7± 3.8 73.6± 7.1 18.8± 6.7 87.4± 41.2 81.4± 5.7 345.8± 15.4

JCI-PC* 5.7± 2.6 23.6± 13.2 35.9± 1.7 83.0± 6.5 13.1± 3.5 77.4± 22.2 76.2± 7.0 341.9± 22.5

JCI-PC(α=2e-1) 7.4± 2.1 28.4± 13.8 36.1± 1.8 83.2± 6.7 17.6± 4.2 84.9± 26.2 76.2± 7.0 341.9± 22.5

JCI-PC(α=1e-1) 6.9± 2.0 26.2± 13.0 36.1± 1.8 83.2± 6.7 15.2± 3.7 83.1± 25.3 76.2± 7.0 341.9± 22.5

JCI-PC(α=1e-2) 5.9± 2.3 23.6± 13.2 36.1± 1.8 83.2± 6.7 13.4± 3.4 79.0± 23.1 76.2± 7.0 341.9± 22.5

JCI-PC(α=1e-3) 5.7± 2.6 23.6± 13.2 36.1± 1.8 83.2± 6.7 13.1± 3.5 77.4± 22.2 76.2± 7.0 341.9± 22.5

DCDI-G 10.1± 4.2 12.4± 8.6 16.4± 5.3 52.3± 15.2 14.3± 18.8 23.3± 13.6 59.9± 10.5 237.6± 40.8

DCDI-DSF 4.4± 5.3 9.4± 9.4 9.3± 4.0 36.9± 11.9 4.9± 3.1 20.0± 12.0 32.5± 7.8 161.3± 37.1
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Table 29: Results for the additive noise model data set with perfect intervention with unknown targets

10 nodes, e = 1 10 nodes, e = 4 20 nodes, e = 1 20 nodes, e = 4

Method SHD SID SHD SID SHD SID SHD SID
UTIGSP*-lin 7.1± 2.3 20.5± 12.5 22.6± 3.0 59.2± 12.6 14.1± 4.8 56.8± 32.0 76.4± 5.7 312.5± 24.3

UTIGSP* 7.0± 4.3 20.6± 13.7 24.9± 2.3 70.8± 5.9 16.8± 7.0 87.1± 52.7 77.9± 6.6 333.4± 18.7

UTIGSP(α=2e-1)-lin 16.9± 4.1 24.2± 12.5 25.9± 5.0 66.5± 9.3 58.0± 10.8 73.7± 31.9 125.5± 11.0 275.8± 23.0

UTIGSP(α=1e-1)-lin 13.8± 6.0 20.8± 15.0 26.9± 4.1 67.1± 11.8 40.0± 11.7 67.0± 50.1 117.9± 6.3 290.7± 16.1

UTIGSP(α=1e-2)-lin 11.2± 4.3 25.2± 13.1 26.4± 4.6 66.5± 13.4 20.5± 10.5 54.8± 41.6 101.5± 7.6 298.6± 19.3

UTIGSP(α=1e-3)-lin 10.3± 3.7 28.1± 13.2 26.2± 3.6 64.6± 7.5 17.3± 7.2 47.6± 24.4 94.5± 7.9 306.8± 20.1

UTIGSP(α=1e-5)-lin 9.3± 2.5 27.4± 9.8 29.0± 3.7 73.0± 5.4 18.3± 6.9 73.0± 42.4 87.9± 7.8 325.2± 14.9

UTIGSP(α=1e-7)-lin 8.1± 2.1 24.9± 11.6 28.2± 3.7 72.4± 8.6 16.6± 5.7 65.8± 40.3 80.2± 8.4 316.4± 22.1

UTIGSP(α=1e-9)-lin 8.2± 2.8 27.5± 10.7 30.7± 3.9 76.7± 5.3 16.7± 5.9 70.2± 42.0 78.3± 4.0 318.9± 20.7

UTIGSP(α=2e-1) 13.5± 3.9 22.2± 17.2 27.6± 3.7 73.7± 3.5 45.6± 9.3 66.2± 43.7 98.6± 10.0 297.3± 36.4

UTIGSP(α=1e-1) 10.6± 6.1 20.1± 12.8 26.7± 2.9 71.9± 6.7 31.3± 5.3 68.3± 45.8 87.8± 10.0 301.0± 35.3

UTIGSP(α=1e-2) 9.1± 4.2 25.3± 10.3 29.0± 2.6 73.1± 3.1 20.8± 7.6 97.6± 53.0 84.4± 9.6 328.2± 17.4

UTIGSP(α=1e-3) 10.4± 4.1 28.1± 12.9 30.5± 4.7 77.8± 5.4 18.6± 7.0 84.5± 45.4 83.6± 5.3 335.0± 25.3

UTIGSP(α=1e-5) 9.9± 4.3 33.6± 12.0 32.1± 3.9 77.4± 6.7 19.5± 6.6 95.6± 50.9 81.9± 7.1 341.3± 12.1

UTIGSP(α=1e-7) 9.4± 4.9 33.3± 14.4 33.7± 3.9 76.8± 9.4 18.5± 6.9 92.3± 49.0 83.3± 8.1 337.5± 21.5

UTIGSP(α=1e-9) 9.4± 5.2 32.1± 15.2 33.0± 4.2 77.7± 8.7 18.7± 6.8 93.8± 52.0 82.9± 7.0 329.4± 28.2

JCI-PC* 8.5± 2.7 33.6± 12.0 35.5± 3.0 76.5± 8.7 15.2± 5.0 90.8± 52.1 72.4± 5.4 330.6± 12.8

JCI-PC(α=2e-1) 10.2± 3.3 35.8± 13.1 35.5± 3.0 75.6± 8.0 21.0± 3.6 92.0± 49.6 72.9± 5.4 328.7± 13.8

JCI-PC(α=1e-1) 9.5± 3.0 35.2± 12.9 35.5± 3.0 75.6± 8.0 17.5± 3.8 91.2± 51.2 72.9± 5.4 328.7± 13.8

JCI-PC(α=1e-2) 9.1± 3.0 35.4± 13.8 35.5± 3.0 75.6± 8.0 15.2± 5.0 90.8± 52.1 72.5± 5.4 330.5± 12.9

JCI-PC(α=1e-3) 8.6± 2.8 33.7± 12.1 35.5± 3.0 75.6± 8.0 15.2± 5.0 90.8± 52.1 72.4± 5.4 330.6± 12.8

DCDI-G 18.2± 10.1 16.4± 5.8 20.4± 6.8 64.8± 10.4 28.0± 33.5 39.1± 29.5 65.5± 11.6 249.8± 26.1

DCDI-DSF 10.6± 7.0 15.3± 10.5 9.1± 3.8 42.2± 12.4 28.0± 29.9 37.8± 22.6 42.4± 15.6 168.5± 37.8

Table 30: Results for the nonlinear with non-additive noise data set with perfect intervention with
unknown targets

10 nodes, e = 1 10 nodes, e = 4 20 nodes, e = 1 20 nodes, e = 4

Method SHD SID SHD SID SHD SID SHD SID
UTIGSP*-lin 3.6± 2.2 14.5± 11.1 23.1± 3.4 66.3± 6.4 13.7± 3.6 67.2± 28.8 68.0± 11.8 323.6± 15.7

UTIGSP* 4.1± 2.7 13.9± 9.5 24.2± 3.8 64.2± 11.1 17.8± 3.7 87.2± 25.8 73.4± 7.6 328.7± 24.9

UTIGSP(α=2e-1)-lin 11.3± 2.8 13.7± 6.9 24.7± 4.7 67.5± 7.4 50.2± 5.4 66.2± 29.4 104.3± 13.6 292.4± 18.5

UTIGSP(α=1e-1)-lin 8.5± 3.2 13.2± 10.3 27.0± 4.2 70.5± 6.3 36.7± 8.5 81.7± 38.1 91.7± 7.6 288.6± 20.4

UTIGSP(α=1e-2)-lin 6.6± 2.6 17.0± 9.9 27.4± 3.4 67.9± 8.7 18.3± 3.7 71.5± 37.0 77.6± 12.1 304.2± 22.4

UTIGSP(α=1e-3)-lin 4.4± 2.5 14.5± 10.8 27.8± 3.6 72.2± 6.0 16.1± 5.2 77.2± 38.4 72.2± 13.4 319.0± 16.9

UTIGSP(α=1e-5)-lin 6.3± 3.6 20.8± 14.8 28.7± 3.4 72.6± 5.7 15.7± 3.7 80.5± 19.0 71.5± 9.3 323.3± 17.0

UTIGSP(α=1e-7)-lin 5.7± 2.9 21.6± 15.3 29.9± 2.8 75.1± 5.4 15.7± 4.2 77.7± 25.7 73.0± 12.8 325.7± 17.8

UTIGSP(α=1e-9)-lin 5.3± 3.3 19.6± 15.3 30.2± 4.0 74.3± 8.6 17.1± 4.1 81.3± 28.2 76.2± 11.3 345.8± 17.9

UTIGSP(α=2e-1) 10.4± 4.0 12.4± 10.0 26.4± 4.4 69.3± 9.7 48.5± 7.8 93.9± 37.5 90.3± 15.5 306.8± 19.9

UTIGSP(α=1e-1) 8.1± 3.3 14.0± 7.6 26.9± 4.1 70.6± 6.8 35.6± 6.5 103.2± 28.8 86.5± 13.9 319.6± 28.1

UTIGSP(α=1e-2) 6.1± 4.1 16.6± 12.5 28.1± 4.8 68.4± 14.3 23.0± 5.7 107.1± 27.5 84.5± 8.9 327.3± 20.4

UTIGSP(α=1e-3) 6.4± 3.6 19.5± 14.5 31.0± 3.1 76.8± 4.3 20.6± 3.5 97.3± 20.8 81.1± 6.2 338.5± 10.8

UTIGSP(α=1e-5) 6.8± 3.5 21.1± 12.9 35.0± 2.2 80.6± 4.8 20.5± 4.2 95.8± 23.2 79.4± 8.8 338.1± 16.0

UTIGSP(α=1e-7) 6.2± 3.5 20.0± 11.5 32.5± 2.1 75.2± 9.9 20.0± 4.5 97.4± 22.2 78.8± 9.3 348.1± 12.2

UTIGSP(α=1e-9) 7.6± 3.8 22.3± 13.4 33.9± 2.0 78.6± 6.9 19.4± 3.9 94.3± 27.1 77.9± 7.5 342.3± 18.7

JCI-PC* 8.1± 2.6 26.7± 13.4 38.8± 1.9 80.8± 7.6 16.3± 3.5 89.8± 34.7 73.7± 7.7 335.8± 15.1

JCI-PC(α=2e-1) 10.5± 2.0 27.3± 14.3 39.2± 2.2 82.9± 6.6 23.4± 4.6 99.4± 34.8 73.8± 7.7 334.4± 18.4

JCI-PC(α=1e-1) 9.6± 2.0 27.8± 14.2 39.2± 2.2 82.9± 6.6 20.5± 3.9 100.0± 33.3 73.9± 7.7 336.2± 15.4

JCI-PC(α=1e-2) 8.2± 2.5 26.7± 13.4 39.4± 2.2 84.8± 4.6 16.8± 3.5 88.8± 36.2 74.0± 7.7 340.0± 14.3

JCI-PC(α=1e-3) 8.1± 2.6 26.7± 13.4 39.5± 2.1 84.9± 4.5 16.4± 3.6 90.9± 37.0 74.1± 7.8 340.1± 14.4

DCDI-G 6.6± 10.1 9.2± 9.4 8.5± 4.2 37.1± 15.3 16.5± 22.8 20.8± 10.5 35.4± 8.4 177.3± 38.8

DCDI-DSF 8.3± 11.4 12.1± 6.6 4.3± 2.6 28.6± 14.2 17.0± 13.5 52.6± 20.2 27.7± 10.0 126.9± 36.6
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